Fast NMPC scheme of a 10 kW commercial PEMFC

被引:9
作者
Damour, C. [1 ]
Benne, M. [1 ]
Kadjo, J. -J. A. [1 ]
Rosini, S. [2 ]
Grondin-Perez, B. [1 ]
机构
[1] Univ La Reunion, LE2P, 15 Av Rene Cassin,BP 7151, F-97715 St Denis, Reunion, France
[2] CEA Grenoble, LITEN, F-38054 Grenoble 9, France
关键词
Real-time control scheme; Parameterized nonlinear model predictive control; Artificial neural network model; Proton exchange membrane fuel cell; MEMBRANE FUEL-CELLS; NEURAL-NETWORK MODEL; MATHEMATICAL-MODEL; GENERATION SYSTEMS; 2-PHASE FLOW; TRANSPORT; CONTROLLER;
D O I
10.1016/j.ijhydene.2013.04.019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work highlights the gains of a fast nonlinear model-based predictive control (NMPC) scheme applied to a 10 kW proton exchange membrane fuel cell (PEMFC). The freshness of the approach is based on a particular parameterization of the control action to decrease the optimization problem dimension. Due to its short computational time, its reliability and its low sensitivity to noise, an artificial neural network (ANN) model is designed and used as a predictive model. The performance of the proposed control strategy is confirmed thanks to simulations through varying control scenarios. Results show good performance in setpoint tracking accuracy and robustness against plant/model mismatch. Moreover, for similar setpoint tracking accuracy, the proposed NMPC scheme appears to be thirty times faster than a classical NMPC strategy. Therefore, the fast NMPC scheme proposed in this work appears to be a promising candidate to achieve real-time implementation. Copyright (C) 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:7407 / 7413
页数:7
相关论文
共 34 条
[1]  
Alamir M, 2006, LECT NOTES CONTR INF, V339, P1, DOI 10.1007/978-1-84628-471-7
[2]  
Amari R, 2009, BUD P EUR CONTR C EC
[3]  
Amari R, 2008, S KOR P IFAC WORLD C
[4]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[5]   Three-dimensional computational analysis of transport phenomena in a PEM fuel cell [J].
Berning, T ;
Lu, DM ;
Djilali, N .
JOURNAL OF POWER SOURCES, 2002, 106 (1-2) :284-294
[6]   High power fuel cell simulator based on artificial neural network [J].
Chavez-Ramirez, Abraham U. ;
Munoz-Guerrero, Roberto ;
Duron-Torres, S. M. ;
Ferraro, M. ;
Brunaccini, G. ;
Sergi, F. ;
Antonucci, V. ;
Arriaga, L. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (21) :12125-12133
[7]   Innovative model-based control approach of a proton exchange membrane fuel cell system [J].
Damour, C. ;
Grondin, D. ;
Benne, M. ;
Grondin-Perez, B. ;
Deseure, J. ;
Chabriat, J. P. .
JOURNAL OF POWER SOURCES, 2012, 206 :144-152
[8]   Three-dimensional numerical simulation of straight channel PEM fuel cells [J].
Dutta, S ;
Shimpalee, S ;
Van Zee, JW .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (02) :135-146
[9]   Two-dimensional model for proton exchange membrane fuel cells [J].
Gurau, V ;
Liu, HT ;
Kakac, S .
AICHE JOURNAL, 1998, 44 (11) :2410-2422
[10]   Operational optimization and real-time control of fuel-cell systems [J].
Hasikos, J. ;
Sarimveis, H. ;
Zervas, P. L. ;
Markatos, N. C. .
JOURNAL OF POWER SOURCES, 2009, 193 (01) :258-268