Chemical Trends in the Lattice Thermal Conductivity of Li(Ni, Mn, Co)O2 (NMC) Battery Cathodes

被引:33
作者
Yang, Hui [1 ]
Savory, Christopher N. [2 ,3 ,4 ]
Morgan, Benjamin J. [4 ,5 ]
Scanlon, David O. [2 ,3 ,4 ,6 ]
Skelton, Jonathan M. [7 ]
Walsh, Aron [1 ,4 ,8 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] UCL, Dept Chem, London WC1H 0AJ, England
[3] UCL, Thomas Young Ctr, London WC1H 0AJ, England
[4] Faraday Inst, Didcot OX11 0RA, Oxon, England
[5] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[6] Diamond Light Source Ltd, Didcot OX11 0DE, Oxon, England
[7] Univ Manchester, Dept Chem, Manchester M13 9PL, Lancs, England
[8] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
英国工程与自然科学研究理事会;
关键词
ELECTROCHEMICAL PROPERTIES; ION BATTERY; LITHIUM; THERMODYNAMICS; LICOO2; CO;
D O I
10.1021/acs.chemmater.0c02908
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While the transport of ions and electrons in conventional Li-ion battery cathode materials is well understood, our knowledge of the phonon (heat) transport is still in its infancy. We present a first-principles theoretical investigation of the chemical trends in the phonon frequency dispersion, mode lifetimes, and thermal conductivity in the series of layered lithium transition-metal oxides Li(NixMnyCoz)O-2 (x + y + z = 1). The oxidation and spin states of the transition metal cations are found to strongly influence the structural dynamics. Calculations of the thermal conductivity show that LiCoO2 has highest average conductivity of 45.9 Wm -1 -K' at T = 300 K and the largest anisotropy, followed by LiMnO2 with 8.9 W.m(-1).K-1 and LiNiO2 with 6.0 W.m(-1).K-1. The much lower thermal conductivity of LiMnO2 and LiNiO2 is found to be due to 1-2 orders of magnitude shorter phonon lifetimes. We further model the properties of binary and ternary transition metal combinations to examine the possible effects of mixing on the thermal transport. These results serve as a guide to ongoing work on the design of multicomponent battery electrodes with more effective thermal management.
引用
收藏
页码:7542 / 7550
页数:9
相关论文
共 43 条
[1]   Think locally - linking structure, thermodynamics and transport in grossly nonstoichiometric compounds and solid solutions [J].
Allan, Neil L. ;
Stolen, Svein ;
Mohn, Chris E. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (35) :4124-4132
[2]   Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries [J].
Armstrong, AR ;
Bruce, PG .
NATURE, 1996, 381 (6582) :499-500
[3]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[4]   GEOMETRY OF POLYHEDRAL DISTORTIONS - PREDICTIVE RELATIONSHIPS FOR PHOSPHATE GROUP [J].
BAUR, WH .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1974, 30 (MAY15) :1195-1215
[5]   Surface phonons of lithium ion battery active materials [J].
Benedek, Peter ;
Yazdani, Nuri ;
Chen, Hungru ;
Wenzler, Nils ;
Juranyi, Fanni ;
Mansson, Martin ;
Islam, M. Saiful ;
Wood, Vanessa C. .
SUSTAINABLE ENERGY & FUELS, 2019, 3 (02) :508-513
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]   Extending the applicability of the Tkatchenko-Scheffler dispersion correction via iterative Hirshfeld partitioning [J].
Bucko, Tomas ;
Lebegue, Sebastien ;
Angyan, Janos G. ;
Hafner, Juergen .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (03)
[8]   Thermal Conductivity, Heat Sources and Temperature Profiles of Li-ion Batteries [J].
Burheim, Odne S. ;
Onsrud, M. A. ;
Pharoah, J. G. ;
Vullum-Bruer, F. ;
Vie, P. J. S. .
LITHIUM-ION BATTERIES, 2014, 58 (48) :145-+
[9]   Designing interfaces in energy materials applications with first-principles calculations [J].
Butler, Keith T. ;
Gautam, Gopalakrishnan Sai ;
Canepa, Pieremanuele .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[10]   Thermal analysis of spirally wound lithium batteries [J].
Chen, SC ;
Wang, YY ;
Wan, CC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (04) :A637-A648