Laplacian eigenvalues for mean zero functions with constant Dirichlet data

被引:5
作者
Greco, Antonio [1 ]
Lucia, Marcello [2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
关键词
D O I
10.1515/FORUM.2008.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the eigenvalues of the Laplace operator in the space of functions of mean zero and having a constant (unprescribed) boundary value. The first eigenvalue of such problem lies between the first two eigenvalues of the Laplacian with homogeneous Dirichlet boundary conditions and satisfies an isoperimetric inequality: in the class of open bounded sets of prescribed measure, it becomes minimal for the union of two disjoint balls having the same radius. Existence of an optimal domain in the class of convex sets is also discussed.
引用
收藏
页码:763 / 782
页数:20
相关论文
共 18 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
[Anonymous], 1944, TREATISE THEORY BESS
[3]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[4]   Eigenvalue and "twisted" eigenvalue problems, applications to CMC surfaces [J].
Barbosa, L ;
Bérard, P .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (05) :427-450
[5]  
BRAMANTI M, 1993, B UNIONE MAT ITAL, V7B, P413
[6]  
Courant, 1953, METHODS MATH PHYS
[7]  
Erdely A., 1953, Higher Transcendental Functions
[8]  
Faber G., 1923, SITZUNGSBERICHTE MAT, V1923, P169
[9]  
Freitas P, 2004, COMMUN ANAL GEOM, V12, P1083
[10]   Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions [J].
Henrot, A ;
Oudet, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (01) :73-87