Existence of Infinite Energy Solutions of Degenerate Elliptic Equations

被引:3
作者
Moscariello, Gioconda [1 ]
di Napoli, Antonia Passarelli [1 ]
Porzio, Maria Michaela [2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Roma La Sapienza, Dipartimento Matemat G Castelnuovo, I-00185 Rome, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2012年 / 31卷 / 04期
关键词
Infinite energy solutions; Orlicz-Zygmund classes; maximal function; RIGHT-HAND SIDE; WEAK SOLUTIONS; INTEGRABILITY; REGULARITY; MINIMA;
D O I
10.4171/ZAA/1466
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an existence theorem for infinite energy solutions of degenerate elliptic equations whose right hand side belongs to a Orlicz-Zygmund class. The function which measures the degree of degeneracy of the problem is assumed to be exponentially integrable. We also study the regularity of the solution when the right hand side belongs to a suitable Lebesgue space.
引用
收藏
页码:393 / 426
页数:34
相关论文
共 20 条
[1]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[2]  
[Anonymous], 1988, Material instabilities in continuum mechanics (Edinburgh, 1985-1986)
[3]  
[Anonymous], 1961, Convex functions and Orlicz spaces
[4]  
BOCCARDO L, 1992, COMMUN PART DIFF EQ, V17, P641
[5]   A NONLINEAR INTERPOLATION RESULT WITH APPLICATION TO THE SUMMABILITY OF MINIMA OF SOME INTEGRAL FUNCTIONALS [J].
Boccardo, Lucio ;
Giachetti, Daniela .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (01) :31-42
[6]   Regularity for p-harmonic equations with right-hand side in Orlicz-Zygmund classes [J].
Carozza, Menita ;
Moscariello, Gioconda ;
di Napoli, Antonia Passarelli .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 242 (02) :248-268
[7]   Local regularity results for minima of functionals of the Calculus of Variation [J].
Giachetti, D ;
Porzio, MM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (04) :463-482
[8]   On very weak solutions of degenerate p-harmonic equations [J].
Giannetti, Flavia ;
Di Napoli, Antonia Passarelli .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2007, 14 (5-6) :739-751
[9]  
GRECO L, 1995, INDIANA U MATH J, V44, P305
[10]   Quasiharmonic fields [J].
Iwaniec, T ;
Sbordone, C .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :519-572