Wet-chemistry topotactic synthesis of bimetallic iron-nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis

被引:200
作者
Zhu, Wenxin [1 ]
Yue, Zhihao [1 ]
Zhang, Wentao [1 ]
Hu, Na [2 ]
Luo, Zhengtao [1 ]
Ren, Meirong [1 ]
Xu, Zhijie [1 ]
Wei, Ziyi [1 ]
Suo, Yourui [2 ]
Wang, Jianlong [1 ]
机构
[1] Northwest A&F Univ, Coll Food Sci & Engn, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Northwest Inst Plateau Biol, Qinghai Key Lab Qinghai Tibet Plateau Biol Resour, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN EVOLUTION REACTION; OXYGEN-EVOLUTION; HIGHLY EFFICIENT; BIFUNCTIONAL ELECTROCATALYSTS; NANOWIRE ARRAYS; NANOSHEET ARRAY; NI FOAM; OXIDATION; ALKALINE; ROBUST;
D O I
10.1039/c7ta10584c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, we report that bimetallic iron-nickel sulfide nanowall arrays supported on nickel foam (Fe-11.1%-Ni3S2/Ni foam) via wet-chemistry conversion from its LDH precursor could perform the function of a high-performance and versatile catalyst toward both overall water and urea electrolysis in a base. Its efficiency for overall water splitting is superior to those of most newly reported transition metal-based bifunctional catalysts, with small cell voltage of 1.60 V needed to gain 10 mA cm(-2). Moreover, this electrode also performs well toward the UOR, requiring very small potentials of 0.284 and 0.372 V (vs. SCE) to achieve 10 and 100 mA cm(-2) in 1.0 M KOH with 0.33 M urea. After replacing the anodic OER with the UOR that has a much lower thermodynamic voltage, this urea-mediated water-electrolysis device could sustain an overall current density of 10 mA cm(-2) at a low voltage of only 1.46 V (140 mV less than that for its urea-free counterpart) for over 20 h. Also, battery-and solar energy-assisted overall water and urea electrolysis devices were built to explore the viability of future less-energy-intensive and large-scale hydrogen generation.
引用
收藏
页码:4346 / 4353
页数:8
相关论文
共 69 条
[1]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[2]   Urea electrolysis: direct hydrogen production from urine [J].
Boggs, Bryan K. ;
King, Rebecca L. ;
Botte, Gerardine G. .
CHEMICAL COMMUNICATIONS, 2009, (32) :4859-4861
[3]   Operando Analysis of NiFe and Fe Oxyhydroxide Electrocatalysts for Water Oxidation: Detection of Fe4+ by Mossbauer Spectroscopy [J].
Chen, Jamie Y. C. ;
Dang, Lianna ;
Liang, Hanfeng ;
Bi, Wenli ;
Gerken, James B. ;
Jin, Song ;
Alp, E. Ercan ;
Stahl, Shannon S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (48) :15090-15093
[4]   Bifunctional Iron-Nickel Nitride Nanoparticles as Flexible and Robust Electrode for Overall Water Splitting [J].
Chen, Qiang ;
Wang, Rui ;
Yu, Minghao ;
Zeng, Yinxiang ;
Lu, Fengqi ;
Kuang, Xiaojun ;
Lu, Xihong .
ELECTROCHIMICA ACTA, 2017, 247 :666-673
[5]   Size Fractionation of Two-Dimensional Sub-Nanometer Thin Manganese Dioxide Crystals towards Superior Urea Electrocatalytic Conversion [J].
Chen, Sheng ;
Duan, Jingjing ;
Vasileff, Anthony ;
Qiao, Shi Zhang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) :3804-3808
[6]   A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density [J].
Cheng, Ningyan ;
Liu, Qian ;
Asiri, Abdullah M. ;
Xing, Wei ;
Sun, Xuping .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (46) :23207-23212
[7]   Energy resources and global development [J].
Chow, J ;
Kopp, RJ ;
Portney, PR .
SCIENCE, 2003, 302 (5650) :1528-1531
[8]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[9]   Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation [J].
Ding, Rui ;
Qi, Li ;
Jia, Mingjun ;
Wang, Hongyu .
NANOSCALE, 2014, 6 (03) :1369-1376
[10]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337