Classification of Imagined Writing from EEG Signals using Autoregressive Features

被引:0
作者
Zabidi, A. [1 ]
Mansor, W. [1 ]
Khuan, Y. L. [1 ]
Fadzal, C. W. N. F. Che Wan [1 ]
机构
[1] Univ Teknol Mara, Fac Elect Engn, Shah Alam 40450, Malaysia
来源
2012 IEEE SYMPOSIUM ON COMPUTER APPLICATIONS AND INDUSTRIAL ELECTRONICS (ISCAIE 2012) | 2012年
关键词
Electroencephalogram; Autoregressive; Multi Layer Perceptron; MODELS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Imagined writing is one of the techniques that may improve writing disorder when brain is trained to perform the activity. The imagined writing activity embedded in EEG signal can be extracted and classified using Autoregressive model and Multi Layer Perceptron. This paper describes the classification of imagined writing letters from EEG signals using Multi Layer Perceptron with Autoregression model as feature extraction method. The optimum Autoregression model order was determined by examining the classification accuracy of Multi Layer Perceptron under various orders. The results showed that the best range of Autoregression order for classifying imagined letters from EEG signals is 15 to 20. With this range, the classification accuracy increases linearly.
引用
收藏
页数:4
相关论文
共 21 条
[1]   Correlation of Sleep EEG Frequency Bands and Heart Rate Variability [J].
Abdullah, Haslaile ;
Holland, Gerard ;
Cosic, Irena ;
Cvetkovic, Dean .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :5014-+
[2]  
Abundo Michael Lochinvar S., 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (ICBBE '08), P1264, DOI 10.1109/ICBBE.2008.644
[3]  
Ajiboye A., 2012, IEEE T BIOMED ENG
[4]  
Amin ZM, 2002, IEEE ST CONF RES DEV, P494, DOI 10.1109/SCORED.2002.1033165
[5]  
[Anonymous], THESIS U TEKNOLOGI M
[6]   Autoregressive modeling for fading channel simulation [J].
Baddour, KE ;
Beaulieu, NC .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2005, 4 (04) :1650-1662
[7]  
Balli T., 2008, EL COMP ENG 2008 CCE
[8]   Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data [J].
Bos, R ;
de Waele, S ;
Broersen, PMT .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (06) :1289-1294
[9]  
Chin-En K., INSTRUMENTATION MEAS, V61, P1649
[10]  
Fadzal C. W., 2011, P 2011 IEEE IN PRESS