Total Ionizing Dose Induced Charge Carrier Scattering in Graphene Devices

被引:35
作者
Cress, Cory D. [1 ]
Champlain, James G. [1 ]
Esqueda, Ivan S. [2 ]
Robinson, Jeremy T. [1 ]
Friedman, Adam L. [1 ]
McMorrow, Julian J. [3 ]
机构
[1] USN, Res Lab, Div Elect Sci & Technol, Washington, DC 20375 USA
[2] Univ So Calif, Inst Informat Sci, Arlington, VA 22203 USA
[3] Sotera Def Solut, Crofton, MD 21114 USA
关键词
Carbon nanoelectronics; charge scattering; graphene; mobility degradation; radiation effects; TID; total ionizing dose; RADIATION-INDUCED DAMAGE; ACTIVATION-ENERGIES; ELECTRON-MOBILITY; HYSTERESIS; TRANSPORT; HOLE;
D O I
10.1109/TNS.2012.2221479
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate total ionizing dose effects in (TID) graphene field effect transistors comprised of chemical vapor deposition grown graphene transferred onto trimethylsiloxy(TMS)-passivated SiO2Si substrates. TID exposure with a positive gate bias increases the concentration of positive oxide trapped charges near the SiO2/TMS/graphene interface making Coulomb-potential scatterer limited mobility more apparent. In particular, we observe asymmetric degradation in electron and hole mobility, the former degrading more rapidly. Consistent with the electron-hole puddle description, we observe an increase in intrinsic electron carrier density that varies linearly with the oxide trapped charge density, while the hole carrier density remains largely unaltered. These effects give rise to an increasing minimum conductivity.
引用
收藏
页码:3045 / 3053
页数:9
相关论文
共 35 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[3]   A physics-based, small-signal model for graphene field effect transistors [J].
Champlain, James G. .
SOLID-STATE ELECTRONICS, 2012, 67 (01) :53-62
[4]   A first principles theoretical examination of graphene-based field effect transistors [J].
Champlain, James G. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[5]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[6]   Diffusive charge transport in graphene on SiO2 [J].
Chen, J. -H. ;
Jang, C. ;
Ishigami, M. ;
Xiao, S. ;
Cullen, W. G. ;
Williams, E. D. ;
Fuhrer, M. S. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1080-1086
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[9]   Total ionizing dose-hardened carbon nanotube thin-film transistors with silicon oxynitride gate dielectrics [J].
Cress, C. D. ;
McMorrow, J. J. ;
Robinson, J. T. ;
Friedman, A. L. ;
Hughes, H. L. ;
Weaver, B. D. ;
Landi, B. J. .
MRS COMMUNICATIONS, 2011, 1 (01) :27-31
[10]  
Cress C. D., 2011, GOV MICR APPL CRIT T, P1