A 14-μA 3-ppm/°C CMOS bandgap voltage reference

被引:0
|
作者
Yao, CH [1 ]
Liu, BA [1 ]
Xia, YW [1 ]
机构
[1] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
来源
2005 6TH INTERNATIONAL CONFERENCE ON ASIC PROCEEDINGS, BOOKS 1 AND 2 | 2005年
关键词
CMOS bandgap reference; curvature compensation; temperature-dependent resistor ration; PSRR; frequency compensation;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The work presented in this paper improves on a high order curvature-compensated CMOS band-gap reference circuit design [6]. A cascoded current mirror is utilized in order to increase the bandgap voltage's power supply rejection ration (PSRR) and decrease the mismatch current A source follower is inserted in series with the capacitor to guarantee the system stable. Simulated in the standard 0.18 mu m CMOS technology, the proposed voltage reference can operate down to 1.5V supply and consumes supply current of 14 mu A. A temperature coefficient of 3-ppm/degrees C is achieved through the temperature-dependent resistor ratio.
引用
收藏
页码:524 / 527
页数:4
相关论文
共 48 条
  • [31] A 0.52 ppm/°C high-order temperature-compensated voltage reference
    Yonggen Liu
    Zhaoji Li
    Ping Luo
    Bo Zhang
    Analog Integrated Circuits and Signal Processing, 2010, 62 : 17 - 21
  • [32] A 2.5 ppm/°C Voltage Reference Combining Traditional BGR and ZTC MOSFET High-Order Curvature Compensation
    Liu, Xifeng
    Liang, Shan
    Liu, Wenju
    Sun, Ping
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2021, 68 (04) : 1093 - 1097
  • [33] A 1-ppm/°C Voltage Reference in the Range of 0.73V-1.4V
    Agarwal, Anshul
    Kumar, Madhava
    Mandavilli, Satyam
    2009 JOINT IEEE NORTH-EAST WORKSHOP ON CIRCUITS AND SYSTEMS AND TAISA CONFERENCE, 2009, : 117 - +
  • [34] A 28 ppm/°C, 2.54 ppm/V,-77 dB@100 Hz pico-ampere voltage reference for high-end IoT systems
    Xu, Huachao
    Lu, Chao
    Hu, Jinlong
    Du, Tao
    Wang, Jin
    Liang, Ke
    Zhang, Yuanzhi
    Li, Guofeng
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2019, 100 : 16 - 24
  • [35] A 1.16-V 5.8-to-13.5-ppm/°C Curvature-Compensated CMOS Bandgap Reference Circuit With a Shared Offset-Cancellation Method for Internal Amplifiers
    Chen, Keng
    Petruzzi, Luca
    Hulfachor, Ronald
    Onabajo, Marvin
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2021, 56 (01) : 267 - 276
  • [36] A 0.35V 12.9pW 8.3ppm/°C 0.012%/V Feedback-controlled Voltage Reference in 65 nm CMOS
    Azam, Ali
    Bai, Zhidong
    Korth, Darren
    Walling, Jeffrey Sean
    2018 16TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2018, : 70 - 73
  • [37] A 2.5 V, 2.56 ppm/°C Curvature-Compensated Bandgap Reference for High-Precision Monitoring Applications
    Zhu, Guangqian
    Fu, Zhaoshu
    Liu, Tingting
    Zhang, Qidong
    Yang, Yintang
    MICROMACHINES, 2022, 13 (03)
  • [38] A 2.2-V 2.9-ppm/℃BiCMOS bandgap voltage reference with full temperature-range curvature-compensation
    周泽坤
    马颖乾
    明鑫
    张波
    李肇基
    半导体学报, 2010, 31 (07) : 91 - 95
  • [39] A 1-V 2.69-ppm/°C 0.8-μW bandgap reference with piecewise exponential curvature compensation
    Luo, Hongrui
    Dong, Lei
    Wang, Yuwei
    Jiao, Zihao
    Chen, Yang
    Wang, Xiaofei
    Zhang, Hong
    MICROELECTRONICS JOURNAL, 2022, 121
  • [40] Ultra-Low-Power Sub-1 V 29 ppm/°C Voltage Reference and Shared-Resistive Current Reference
    Shetty, Darshan
    Steffan, Christoph
    Holweg, Gerald
    Boesch, Wolfgang
    Grosinger, Jasmin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (03) : 1030 - 1042