The beta-Pareto distribution

被引:146
作者
Akinsete, Alfred [2 ]
Famoye, Felix [1 ]
Lee, Carl [1 ]
机构
[1] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[2] Marshall Univ, Dept Math, Huntington, WV USA
关键词
unimodality; hazard function; moments; estimation; flood peaks;
D O I
10.1080/02331880801983876
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, a four-parameter beta-Pareto distribution is defined and studied. Various properties of the distribution are discussed. The distribution is found to be unimodal and has either a unimodal or a decreasing hazard rate. The expressions for the mean, mean deviation, variance, skewness, kurtosis and entropies are obtained. The relationship between these moments and the parameters are provided. The method of maximum likelihood is proposed to estimate the parameters of the distribution. The distribution is applied to two flood data sets.
引用
收藏
页码:547 / 563
页数:17
相关论文
共 24 条
[1]   Parameter estimation for the truncated pareto distribution [J].
Aban, IB ;
Meerschaert, MM ;
Panorska, AK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :270-277
[2]   AN EXPLANATORY MODEL OF CITY-SIZE DISTRIBUTION - EVIDENCE FROM CROSS-COUNTRY DATA [J].
ALPEROVICH, G .
URBAN STUDIES, 1993, 30 (09) :1591-1601
[3]  
[Anonymous], 2004, PROBABILITY STAT ENG
[4]   Upper-truncated power law distributions [J].
Burroughs, SM ;
Tebbens, SF .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2001, 9 (02) :209-222
[5]   Goodness-of-fit tests for the generalized Pareto distribution [J].
Choulakian, V ;
Stephens, MA .
TECHNOMETRICS, 2001, 43 (04) :478-484
[6]  
DUFRESNE D, 2005, FITTING COMBINATION, P1
[7]   Beta-normal distribution and its applications [J].
Eugene, N ;
Lee, C ;
Famoye, F .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (04) :497-512
[8]  
Famoye F., 2005, J STAT THEORY APPL, V4, P121
[9]  
Fofack H., 1999, EXTREMES, V2, P39, DOI DOI 10.1023/A:1009908026279
[10]  
Hogg R. V., 2005, INTRO MATH STAT