ENHANCED CHANGE DETECTION USING NONLINEAR FEATURE EXTRACTION

被引:1
作者
Volpi, Michele [1 ]
Matasci, Giona [1 ]
Tuia, Devis
Kanevski, Mikhail [1 ]
机构
[1] Univ Lausanne, Inst Geomat & Anal Risk, CH-1015 Lausanne, Switzerland
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Change detection; Nonlinear feature extraction; Kernel PCA; Preprocessing; Image alignment;
D O I
10.1109/IGARSS.2012.6352554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an application of the kernel principal component analysis aiming at spectrally aligning optical images before the application of change detection techniques. The approach relies on the extraction of nonlinear features from a selected subset of pixels representing unchanged areas in the bi-temporal images. Both images are then projected into the new space defined by the eigenvectors associated to largest variance (eigenvalues). In the transformed space, unchanged pixels are mapped next to each other, thus reducing within-class variance. The difference image that results from subtracting the projected datasets is likely to provide a more suitable representation for detecting changes. A subset of two Landsat TM scenes validates the proposed approach. The new representation is studied thanks to the change vector analysis and to the support vector domain description.
引用
收藏
页码:6757 / 6760
页数:4
相关论文
共 9 条
[1]   A support vector domain method for change detection in multitemporal images [J].
Bovolo, F. ;
Camps-Valls, G. ;
Bruzzone, L. .
PATTERN RECOGNITION LETTERS, 2010, 31 (10) :1148-1154
[2]   A theoretical framework for unsupervised change detection based on change vector analysis in the polar domain [J].
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01) :218-236
[3]  
Bruzzone L., 2011, SPIE IM SIGNAL P REM, V8180
[4]   Improving the SVDD Approach to Hyperspectral Image Classification [J].
Khazai, Safa ;
Safari, Abdolreza ;
Mojaradi, Barat ;
Homayouni, Saeid .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (04) :594-598
[5]  
Nielsen A., 2008, SPIE IM SIGNAL P REM, V7109
[6]   Nonlinear component analysis as a kernel eigenvalue problem [J].
Scholkopf, B ;
Smola, A ;
Muller, KR .
NEURAL COMPUTATION, 1998, 10 (05) :1299-1319
[7]   Graph Matching for Adaptation in Remote Sensing [J].
Tuia, Devis ;
Munoz-Mari, Jordi ;
Gomez-Chova, Luis ;
Malo, Jesus .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :329-341
[8]   Unsupervised Change Detection With Kernels [J].
Volpi, Michele ;
Tuia, Devis ;
Camps-Valls, Gustavo ;
Kanevski, Mikhail .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (06) :1026-1030
[9]   Supervised change detection in VHR images using contextual information and support vector machines [J].
Volpi, Michele ;
Tuia, Devis ;
Bovolo, Francesca ;
Kanevski, Mikhail ;
Bruzzone, Lorenzo .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 20 :77-85