Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems

被引:0
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Osaka, Japan
来源
HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective 0/1 knapsack problems have been frequently used as test problems for the performance evaluation of evolutionary multiobjective optimization algorithms. It has been shown that their performance on such test problems strongly depends on the choice of a repair method to transform infeasible solutions into feasible ones. We examine partial Lamarckianism where Lamarckian repair is probabilistically applied to infeasible solutions. When the Lamarckian repair is not applied to an infeasible solution, Baldwinian repair is used. We propose an island model to spatially implement the partial Lamarckianism where each island is based on either Lamarckian or Baldwinian.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
[41]   Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms [J].
Dlugosz, A. ;
Burczynski, T. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2012, 60 (02) :215-222
[42]   A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms [J].
Tinkle Chugh ;
Karthik Sindhya ;
Jussi Hakanen ;
Kaisa Miettinen .
Soft Computing, 2019, 23 :3137-3166
[43]   Quantum-inspired evolutionary algorithms on continuous space multiobjective problems [J].
Cynthia Olvera ;
Oscar Montiel ;
Yoshio Rubio .
Soft Computing, 2023, 27 :13143-13164
[44]   Solving of discrete multiobjective problems using an evolutionary algorithm with a repair mechanism [J].
Zydallis, JB ;
Lamont, GB .
PROCEEDINGS OF THE 44TH IEEE 2001 MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2001, :470-473
[45]   Comparison of local search implementation schemes in hybrid evolutionary multiobjective optimization algorithms [J].
Ishibuchi, H ;
Narukawa, K .
HIS'04: FOURTH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS, 2005, :404-409
[46]   MOLeCS: Using multiobjective evolutionary algorithms for learning [J].
Mansilla, EBI ;
Guiu, JMGI .
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 :696-710
[47]   Improving Proximity and Diversity in Multiobjective Evolutionary Algorithms [J].
Ahn, Chang Wook ;
Kim, Yehoon .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (10) :2879-2882
[48]   Multiobjective Groundwater Management Using Evolutionary Algorithms [J].
Siegfried, Tobias ;
Bleuler, Stefan ;
Laumanns, Marco ;
Zitzler, Eckart ;
Kinzelbach, Wolfgang .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :229-242
[49]   Performance Metric Ensemble for Multiobjective Evolutionary Algorithms [J].
Yen, Gary G. ;
He, Zhenan .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) :131-144
[50]   Considerations in engineering parallel multiobjective evolutionary algorithms [J].
Van Veldhuizen, DA ;
Zydallis, JB ;
Lamont, GB .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :144-173