Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems

被引:0
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Osaka, Japan
来源
HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective 0/1 knapsack problems have been frequently used as test problems for the performance evaluation of evolutionary multiobjective optimization algorithms. It has been shown that their performance on such test problems strongly depends on the choice of a repair method to transform infeasible solutions into feasible ones. We examine partial Lamarckianism where Lamarckian repair is probabilistically applied to infeasible solutions. When the Lamarckian repair is not applied to an infeasible solution, Baldwinian repair is used. We propose an island model to spatially implement the partial Lamarckianism where each island is based on either Lamarckian or Baldwinian.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
[21]   A Hybrid Evolutionary Metaheuristics (HEMH) applied on 0/1 Multiobjective Knapsack Problems [J].
Kafafy, Ahmed ;
Bounekkar, Ahmed ;
Bonnevay, Stephane .
GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2011, :497-504
[22]   A Hybrid Multiobjective Evolutionary Algorithm for Multiobjective Optimization Problems [J].
Tang, Lixin ;
Wang, Xianpeng .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (01) :20-45
[23]   Application of multiobjective evolutionary algorithms for dose optimization problems in brachytherapy [J].
Lahanas, M ;
Milickovic, N ;
Baltas, D ;
Zamboglou, N .
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 :574-587
[24]   AN ANALYSIS OF MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR OPTIMIZATION PROBLEMS WITH TIME CONSTRAINTS [J].
Camara, M. ;
de Toro, F. ;
Ortega, J. .
APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (09) :851-879
[25]   Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance [J].
Grosan, C .
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, :1958-1963
[26]   Improving the performance of evolutionary algorithms for the multiobjective 0/1 knapsack problem using ε-dominance [J].
Grosan, C ;
Oltean, M .
COMPUTATIONAL SCIENCE - ICCS 2004, PT 2, PROCEEDINGS, 2004, 3037 :674-677
[27]   On Multiobjective Knapsack Problems with Multiple Decision Makers [J].
Song, Zhen ;
Luo, Wenjian ;
Lin, Xin ;
She, Zeneng ;
Zhang, Qingfu .
2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, :156-163
[28]   A Probability Model based Evolutionary Algorithm with Priori and Posteriori Knowledge for Multiobjective Knapsack Problems [J].
Li, Yang ;
Zhou, Aimin ;
Zhang, Guixu .
2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, :1330-1335
[29]   How to Strike a Balance between Local Search and Global Search in Multiobjective Memetic Algorithms for Multiobjective 0/1 Knapsack Problems [J].
Ishibuchi, Hisao ;
Tanigaki, Yuki ;
Akedo, Naoya ;
Nojima, Yusuke .
2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, :1643-1650
[30]   An Overview of Evolutionary Algorithms in Multiobjective Optimization [J].
Fonseca, Carlos M. ;
Fleming, Peter J. .
EVOLUTIONARY COMPUTATION, 1995, 3 (01) :1-16