Spatial implementation of evolutionary multiobjective algorithms with partial Lamarckian repair for multiobjective knapsack problems

被引:0
作者
Ishibuchi, H [1 ]
Narukawa, K [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Dept Comp Sci & Intelligent Syst, Osaka, Japan
来源
HIS 2005: 5TH INTERNATIONAL CONFERENCE ON HYBRID INTELLIGENT SYSTEMS, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiobjective 0/1 knapsack problems have been frequently used as test problems for the performance evaluation of evolutionary multiobjective optimization algorithms. It has been shown that their performance on such test problems strongly depends on the choice of a repair method to transform infeasible solutions into feasible ones. We examine partial Lamarckianism where Lamarckian repair is probabilistically applied to infeasible solutions. When the Lamarckian repair is not applied to an infeasible solution, Baldwinian repair is used. We propose an island model to spatially implement the partial Lamarckianism where each island is based on either Lamarckian or Baldwinian.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 50 条
[11]   Evolutionary and heuristic algorithms for multiobjective 0-1 knapsack problem [J].
Kumar, Rajeev ;
Singh, R. K. ;
Singhal, A. P. ;
Bhartia, Atul .
APPLICATIONS OF SOFT COMPUTING: RECENT TRENDS, 2006, :331-+
[12]   Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem [J].
Laumanns M. ;
Thiele M. ;
Zitzler E. .
Natural Computing, 2004, 3 (1) :37-51
[13]   Performance evaluation, of simple multiobjective genetic local search algorithms on multiobjective 0/1 knapsack problems [J].
Ishibuchi, H ;
Narukawa, K .
CEC2004: PROCEEDINGS OF THE 2004 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2004, :441-448
[14]   Multiobjective evolutionary algorithms for complex portfolio optimization problems [J].
Anagnostopoulos K.P. ;
Mamanis G. .
Computational Management Science, 2011, 8 (3) :259-279
[15]   Multiobjective evolutionary algorithms for solving constrained optimization problems [J].
Sarker, Ruhul ;
Ray, Tapabrata .
INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR MODELLING, CONTROL & AUTOMATION JOINTLY WITH INTERNATIONAL CONFERENCE ON INTELLIGENT AGENTS, WEB TECHNOLOGIES & INTERNET COMMERCE, VOL 2, PROCEEDINGS, 2006, :197-+
[16]   Neuroevolution for solving multiobjective knapsack problems [J].
Denysiuk, Roman ;
Gaspar-Cunha, Antonio ;
Delbem, Alexandre C. B. .
EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 :65-77
[17]   A Novel Multiobjective Optimization Algorithm for 0/1 Multiobjective Knapsack Problems [J].
Chen, Min-Rong ;
Weng, Jian ;
Li, Xia .
ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 3, 2010, :359-+
[18]   A tool for multiobjective evolutionary algorithms [J].
Sag, Tahir ;
Cunkas, Mehmet .
ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (09) :902-912
[19]   On the convergence of multiobjective evolutionary algorithms [J].
Hanne, T .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (03) :553-564
[20]   Interactive Multiobjective Evolutionary Algorithms [J].
Jaszkiewicz, Andrzej ;
Branke, Juergen .
MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 :179-+