Thermal conductivity of defective graphene

被引:114
作者
Zhang, Y. Y. [1 ]
Cheng, Y. [2 ]
Pei, Q. X. [2 ]
Wang, C. M. [3 ,4 ]
Xiang, Y. [1 ]
机构
[1] Univ Western Sydney, Sch Comp Engn & Math, Sydney, NSW 2751, Australia
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Natl Univ Singapore, Engn Sci Programme, Kent Ridge 119260, Singapore
[4] Natl Univ Singapore, Dept Civil & Environm Engn, Kent Ridge 119260, Singapore
关键词
Thermal conductivity; Graphene; Defect; Molecular dynamics; MOLECULAR-DYNAMICS; LAYER GRAPHENE; LARGE-AREA; FILMS; NANORIBBONS; TRANSPORT;
D O I
10.1016/j.physleta.2012.10.048
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, the thermal conductivity of defective graphene is investigated by using non-equilibrium molecular dynamics simulations. It is found that various defects including single vacancy, double vacancy and Stone-Wales defects can greatly reduce the thermal conductivity of graphene. The amount of reduction depends strongly on the density and type of defects at small density level. However, at higher defect density level, the thermal conductivity of defective graphene decreases slowly with increasing defect density and shows marginal dependence on the defect type. The thermal conductivity is found to become less sensitive to temperature with increasing defect density. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3668 / 3672
页数:5
相关论文
共 33 条
[1]   Thermal transport across Twin Grain Boundaries in Polycrystalline Graphene from Nonequilibrium Molecular Dynamics Simulations [J].
Bagri, Akbar ;
Kim, Sang-Pil ;
Ruoff, Rodney S. ;
Shenoy, Vivek B. .
NANO LETTERS, 2011, 11 (09) :3917-3921
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[5]   Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons [J].
Cao, Hai-Yuan ;
Guo, Zhi-Xin ;
Xiang, Hongjun ;
Gong, Xin-Gao .
PHYSICS LETTERS A, 2012, 376 (04) :525-528
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[8]   Thermal conductivity of graphene nanoribbons [J].
Guo, Zhixin ;
Zhang, Dier ;
Gong, Xin-Gao .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[9]   Mechanical and thermal transport properties of graphene with defects [J].
Hao, Feng ;
Fang, Daining ;
Xu, Zhiping .
APPLIED PHYSICS LETTERS, 2011, 99 (04)
[10]   Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons [J].
Haskins, Justin ;
Kinaci, Alper ;
Sevik, Cem ;
Sevincli, Haldun ;
Cuniberti, Gianaurelio ;
Cagin, Tahir .
ACS NANO, 2011, 5 (05) :3779-3787