Holonomy of sub-Riemannian manifolds

被引:13
|
作者
Falbel, E
Gorodski, C
Rumin, M
机构
[1] UNIV FED SAO PAULO,INST MATEMAT & ESTATIST,BR-05315970 SAO PAULO,BRAZIL
[2] UNIV PARIS 11,F-91405 ORSAY,FRANCE
关键词
D O I
10.1142/S0129167X97000159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sub-Riemannian manifold is a smooth manifold which carries a distribution equipped with a metric. We study the holonomy and the horizontal holonomy (i.e. holonomy spanned by loops everywhere tangent to the distribution) of sub-Riemannian manifolds of contact type relative to an adapted connection. In particular, we obtain an Ambrose-Singer type theorem for the horizontal holonomy and we classify the holonomy irreducible sub-Riemannian symmetric spaces (i.e. homogeneous sub-Riemannian manifolds admitting an involutive isometry whose restriction to the distribution is a central symmetry).
引用
收藏
页码:317 / 344
页数:28
相关论文
共 50 条
  • [1] On some sub-Riemannian objects in hypersurfaces of sub-Riemannian manifolds
    Tan, KH
    Yang, XP
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2004, 70 (02) : 177 - 198
  • [2] Classification of sub-Riemannian manifolds
    S. K. Vodop’yanov
    I. G. Markina
    Siberian Mathematical Journal, 1998, 39 : 1096 - 1111
  • [3] Classification of sub-Riemannian manifolds
    Vodop'yanov, SK
    Markina, IG
    SIBERIAN MATHEMATICAL JOURNAL, 1998, 39 (06) : 1096 - 1111
  • [4] Sub-Laplacians on Sub-Riemannian Manifolds
    Maria Gordina
    Thomas Laetsch
    Potential Analysis, 2016, 44 : 811 - 837
  • [5] Sub-Laplacians on Sub-Riemannian Manifolds
    Gordina, Maria
    Laetsch, Thomas
    POTENTIAL ANALYSIS, 2016, 44 (04) : 811 - 837
  • [6] Quasiregular Mappings on Sub-Riemannian Manifolds
    Katrin Fässler
    Anton Lukyanenko
    Kirsi Peltonen
    The Journal of Geometric Analysis, 2016, 26 : 1754 - 1794
  • [7] MASS TRANSPORTATION ON SUB-RIEMANNIAN MANIFOLDS
    Figalli, Alessio
    Rifford, Ludovic
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 124 - 159
  • [8] On isometric immersions of sub-Riemannian manifolds
    Rovenski, Vladimir
    FILOMAT, 2023, 37 (25) : 8543 - 8551
  • [9] Mass Transportation on Sub-Riemannian Manifolds
    Alessio Figalli
    Ludovic Rifford
    Geometric and Functional Analysis, 2010, 20 : 124 - 159
  • [10] Quasiregular Mappings on Sub-Riemannian Manifolds
    Faessler, Katrin
    Lukyanenko, Anton
    Peltonen, Kirsi
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) : 1754 - 1794