Influence of Signal Intensity Non-Uniformity on Brain Volumetry Using an Atlas-Based Method

被引:14
作者
Goto, Masami [1 ,2 ]
Abe, Osamu [3 ]
Miyati, Tosiaki [2 ]
Kabasawa, Hiroyuki [4 ]
Takao, Hidemasa [5 ]
Hayashi, Naoto [6 ]
Kurosu, Tomomi [1 ]
Iwatsubo, Takeshi [7 ]
Yamashita, Fumio [8 ]
Matsuda, Hiroshi [9 ]
Mori, Harushi [5 ]
Kunimatsu, Akira [5 ]
Aoki, Shigeki [10 ]
Ino, Kenji [1 ]
Yano, Keiichi [1 ]
Ohtomo, Kuni [5 ]
机构
[1] Tokyo Univ Hosp, Dept Radiol Technol, Bunkyo Ku, Tokyo 1138655, Japan
[2] Kanazawa Univ, Grad Sch Med Sci, Kanazawa, Ishikawa 9200293, Japan
[3] Nihon Univ, Sch Med, Dept Radiol, Tokyo 1138602, Japan
[4] GE Healthcare, Japan Appl Sci Lab, Tokyo 1918503, Japan
[5] Tokyo Univ Hosp, Dept Radiol, Tokyo 1138655, Japan
[6] Tokyo Univ Hosp, Dept Computat Diagnost Radiol & Prevent Med, Tokyo 1138655, Japan
[7] Univ Tokyo, Dept Neuropathol, Tokyo 1138655, Japan
[8] Natl Ctr Hosp Neurol & Psychiat, Dept Radiol, Tokyo 1878551, Japan
[9] Saitama Med Univ, Dept Nucl Med, Int Med Ctr, Saitama 3501298, Japan
[10] Juntendo Univ, Dept Radiol, Tokyo 1138421, Japan
关键词
Atlas-based; Bias correction; Brain volumetry; Intensity non-uniformity; Non-parametric non-uniform intensity normalization; MULTICENTER MRI; ATROPHY RATES; RELIABILITY; SCHIZOPHRENIA; SEGMENTATION; MORPHOMETRY; DISEASE; IMAGES; 1.5-T;
D O I
10.3348/kjr.2012.13.4.391
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objective: Many studies have reported pre-processing effects for brain volumetry; however, no study has investigated whether non-parametric non-uniform intensity normalization (N3) correction processing results in reduced system dependency when using an atlas-based method. To address this shortcoming, the present study assessed whether N3 correction processing provides reduced system dependency in atlas-based volumetry. Materials and Methods: Contiguous sagittal T1-weighted images of the brain were obtained from 21 healthy participants, by using five magnetic resonance protocols. After image preprocessing using the Statistical Parametric Mapping 5 software, we measured the structural volume of the segmented images with the WFU-PickAtlas software. We applied six different bias-correction Levels (Regularization 10, Regularization 0.0001, Regularization 0, Regularization 10 with N3, Regularization 0.0001 with N3, and Regularization 0 with N3) to each set of images. The structural volume change ratio (%) was defined as the change ratio (%) = (100 x [measured volume - mean volume of five magnetic resonance protocols] / mean volume of five magnetic resonance protocols) for each bias-correction level. Results: A low change ratio was synonymous with lower system dependency. The results showed that the images with the N3 correction had a lower change ratio compared with those without the N3 correction. Conclusion: The present study is the first atlas-based volumetry study to show that the precision of atlas-based volumetry improves when using N3-corrected images. Therefore, correction for signal intensity non-uniformity is strongly advised for multi-scanner or multi-site imaging trials.
引用
收藏
页码:391 / 402
页数:12
相关论文
共 29 条
[1]   Qualitative and quantitative evaluation of six algorithms for correcting intensity nonuniformity effects [J].
Arnold, JB ;
Liow, JS ;
Schaper, KA ;
Stern, JJ ;
Sled, JG ;
Shattuck, DW ;
Worth, AJ ;
Cohen, MS ;
Leahy, RM ;
Mazziotta, JC ;
Rottenberg, DA .
NEUROIMAGE, 2001, 13 (05) :931-943
[2]   Voxel-based morphometry - The methods [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2000, 11 (06) :805-821
[3]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[4]   Differentiating AD from aging using semiautomated measurement of hippocampal atrophy rates [J].
Barnes, J ;
Scahill, RI ;
Boyes, RG ;
Frost, C ;
Lewis, EB ;
Rossor, CL ;
Rossor, MN ;
Fox, NC .
NEUROIMAGE, 2004, 23 (02) :574-581
[5]   Intensity non-uniformity correction using N3 on 3-T scanners with mutichannel phased array coils [J].
Boyes, Richard G. ;
Gunter, Jeff L. ;
Frost, Chris ;
Janke, Andrew L. ;
Yeatman, Thomas ;
Hill, Derek L. G. ;
Bernstein, Matt A. ;
Thompson, Paul M. ;
Weiner, Michael W. ;
Schuff, Norbert ;
Alexander, Gene E. ;
Killiany, Ronald J. ;
DeCarli, Charles ;
Jack, Clifford R. ;
Fox, Nick C. .
NEUROIMAGE, 2008, 39 (04) :1752-1762
[6]   Multicenter assessment of reliability of cranial MRI [J].
Ewers, M. ;
Teipel, S. J. ;
Dietrich, O. ;
Schoenberg, S. O. ;
Jessen, F. ;
Heun, R. ;
Scheltens, P. ;
van de Pol, L. ;
Freymann, N. R. ;
Moeller, H. -J. ;
Hampel, H. .
NEUROBIOLOGY OF AGING, 2006, 27 (08) :1051-1059
[7]   MR SIGNAL ABNORMALITIES AT 1.5-T IN ALZHEIMER DEMENTIA AND NORMAL AGING [J].
FAZEKAS, F ;
CHAWLUK, JB ;
ALAVI, A ;
HURTIG, HI ;
ZIMMERMAN, RA .
AMERICAN JOURNAL OF ROENTGENOLOGY, 1987, 149 (02) :351-356
[8]   Sequence-independent segmentation of magnetic resonance images [J].
Fischl, B ;
Salat, DH ;
van der Kouwe, AJW ;
Makris, N ;
Ségonne, F ;
Quinn, BT ;
Dale, AM .
NEUROIMAGE, 2004, 23 :S69-S84
[9]   Using serial registered brain magnetic resonance imaging to measure disease progression in Alzheimer disease - Power calculations and estimates of sample size to detect treatment effects [J].
Fox, NC ;
Cousens, S ;
Scahill, R ;
Harvey, RJ ;
Rossor, MN .
ARCHIVES OF NEUROLOGY, 2000, 57 (03) :339-344
[10]   Age-related changes in regional brain volume evaluated by atlas-based method [J].
Gonoi, Wataru ;
Abe, Osamu ;
Yamasue, Hidenori ;
Yamada, Haruyasu ;
Masutani, Yoshitaka ;
Takao, Hidemasa ;
Kasai, Kiyoto ;
Aoki, Shigeki ;
Ohtomo, Kuni .
NEURORADIOLOGY, 2010, 52 (10) :865-873