Geometric approach to statistical analysis on the simplex

被引:282
作者
Pawlowsky-Glahn, V
Egozcue, JJ
机构
[1] Univ Girona, Dept Informat & Matemat Aplicada, E-17071 Girona, Spain
[2] Univ Politecn Cataluna, ETSECCPB, Dept Matemat Aplicada 3, Barcelona, Spain
关键词
Aitchison geometry; compositional data; Euclidean space; finite dimensional Hilbert space; metric center; metric variance;
D O I
10.1007/s004770100077
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The geometric interpretation of the expected value and the variance in real Euclidean space is used as a starting point to introduce metric counterparts on an arbitrary finite dimensional Hilbert space. This approach allows us to define general reasonable properties for estimators of parameters, like metric unbiasedness and minimum metric variance, resulting in a useful tool to better understand the logratio approach to the statistical analysis of compositional data, who's natural sample space is the simplex.
引用
收藏
页码:384 / 398
页数:15
相关论文
共 15 条
  • [1] AITCHISON J, 1982, J ROY STAT SOC B, V44, P139
  • [2] Aitchison J, 2003, STAT ANAL COMPOSITIO
  • [3] AITCHISON J, 2001, IN PRESS CONT MATH S
  • [4] AITCHISON J, 1997, P IAMG 97 3 ANN C IN, V1, P3
  • [5] Aitchison J, 1997, P IAMG 97 3 ANN C IN, VII, ppp
  • [6] Ash R. B., 1972, REAL ANAL PROBABILIT, DOI DOI 10.1016/C2013-0-06164-6
  • [7] Berberian S., 1961, INTRO HILBERT SPACE
  • [8] BUCCIANTI A, 1999, P IAMG 99 5 ANN C IN, V2, P139
  • [9] BUCCIANTI A, 1999, P IAMG 99 5 ANN C IN, V1, P139
  • [10] The proximity of an individual to a population with applications in discriminant analysis
    Cuadras, CM
    Fortiana, J
    Oliva, F
    [J]. JOURNAL OF CLASSIFICATION, 1997, 14 (01) : 117 - 136