Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations

被引:59
作者
Shao, Lei [1 ]
Samseth, Jon [2 ,3 ]
Hagg, May-Britt [1 ]
机构
[1] Norwegian Univ Sci & Technol, Fac Nat Sci & Technol, Dept Chem Engn, N-7491 Trondheim, Norway
[2] SINTEF Mat & Chem, N-7465 Trondheim, Norway
[3] Akershus Univ Coll, N-2001 Lillestrom, Norway
关键词
Poly(4-methyl-2-pentyne); Crosslinking; Membrane; Gas separation; FREE-VOLUME DISTRIBUTIONS; ENHANCED FREE-VOLUME; POSITRON-ANNIHILATION; PERMEABILITY; TRANSPORT; POLYMERS; SORPTION; LIFETIME; POLY(1-TRIMETHYLSILYL-1-PROPYNE); POLY(4-METHYL-2-PENTYNE);
D O I
10.1016/j.memsci.2008.09.053
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Poly(4-methyl-2-pentyne) (PMP) has been crosslinked using 4,4'-(hexafluoroisopropylidene) diphenyl azide (HFBAA) to improve its chemical and physical stability over time. Crosslinking PMP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume (FFV) decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PMP was due to decrease in diffusion coefficient. Compared to the pure PMP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (FS, TiO2), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O-2/N-2, H-2/N-2, CO2/N-2, CO2/CH4 and H-2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PMP membranes and PMP/filler nanocomposites over time. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:285 / 292
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 2004, MEMBRANE TECHNOLOGY
[2]  
Bondi A., 1968, PHYS PROPERTIES MOL
[3]   PAMAM dendrimer-induced cross-linking modification of polyimide membranes [J].
Chung, TS ;
Chng, ML ;
Pramoda, KP ;
Xiao, YC .
LANGMUIR, 2004, 20 (07) :2966-2969
[4]  
Consolati G, 1996, J POLYM SCI POL PHYS, V34, P357, DOI 10.1002/(SICI)1099-0488(19960130)34:2<357::AID-POLB17>3.0.CO
[5]  
2-I
[6]  
DEFORSET W, 1975, PHOTORESIST MAT PROC
[7]  
Ghosal K., 1994, POLYM ADVAN TECHNOL, V5, P673
[8]   129Xe-NMR study of free volume in amorphous perfluorinated polymers:: comparsion with other methods [J].
Golemme, G ;
Nagy, JB ;
Fonseca, A ;
Algieri, C ;
Yampolskii, Y .
POLYMER, 2003, 44 (17) :5039-5045
[9]   Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation [J].
He, ZJ ;
Pinnau, I ;
Morisato, A .
DESALINATION, 2002, 146 (1-3) :11-15
[10]   Molecular modeling investigation of free volume distributions in stiff chain polymers with conventional and ultrahigh free volume: Comparison between molecular modeling and positron lifetime studies [J].
Hofmann, D ;
Entrialgo-Castano, M ;
Lerbret, A ;
Heuchel, M ;
Yampolskii, Y .
MACROMOLECULES, 2003, 36 (22) :8528-8538