A periodic predator-prey-chain system with impulsive perturbation

被引:7
作者
Dong, Lingzhen [1 ]
Chen, Lansun [2 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Dalian Univ Technol, Dept Math, Dalian 116023, Peoples R China
关键词
Predator-prey chain; Bifurcation; Impulsive perturbation; Positive periodic solution; Noncritical solution;
D O I
10.1016/j.cam.2008.02.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A periodic predator-prey-chain system with impulsive effects is considered. By using the global results of Rabinowitz and standard techniques of bifurcation theory, the existence of its trivial, semi-trivial and nontrivial positive periodic solutions is obtained. It is shown that the nontrivial positive periodic solution for such a system may be bifurcated from an unstable semitrivial periodic solution. Furthermore, the stability of these periodic solutions is studied. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:578 / 584
页数:7
相关论文
共 8 条
[1]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[2]  
BARDI M, 1981, J MATH BIOL, V12, P127, DOI 10.1007/BF00275208
[3]  
CUSHING JM, 1980, J MATH BIOL, V10, P384
[4]   Existence of positive periodic solution of periodic time-dependent predator-prey system with impulsive effects [J].
Hui, J ;
Chen, LS .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) :423-432
[5]  
Lakmeche A, 2000, DYN CONTIN DISCRET I, V7, P265
[6]  
Rabinowitz P. H., 1971, Journal of Functional Analysis, V7, P487, DOI 10.1016/0022-1236(71)90030-9
[7]   THE PERIODIC PREDATOR-PREY LOTKA-VOLTERRA MODEL WITH IMPULSIVE EFFECT [J].
Tang, Sanyi ;
Chen, Lansun .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2002, 2 (3-4) :267-296
[8]   Periodic solution for a two-species nonautonomous competition Lotka-Votterra patch system with time delay [J].
Zhang, ZQ ;
Wang, ZC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (01) :38-48