Induction and Suppression of PEN3 Focal Accumulation During Pseudomonas syringae pv. tomato DC3000 Infection of Arabidopsis

被引:36
作者
Xin, Xiu-Fang [1 ,2 ]
Nomura, Kinya [2 ]
Underwood, William [3 ]
He, Sheng Yang [1 ,2 ,4 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Energy Plant Res Lab, E Lansing, MI 48824 USA
[3] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA
[4] Michigan State Univ, Howard Hughes Med Inst, Gordon & Betty Moore Fdn, E Lansing, MI 48824 USA
关键词
BINDING CASSETTE TRANSPORTER; HEAVY-METAL RESISTANCE; ABC TRANSPORTER; PLEIOTROPIC DRUG; INNATE IMMUNITY; NICOTIANA-PLUMBAGINIFOLIA; NONHOST RESISTANCE; SALICYLIC-ACID; EFFECTOR; DEFENSE;
D O I
10.1094/MPMI-11-12-0262-R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The pleiotropic drug resistance (PDR) proteins belong to the super-family of ATP-binding cassette (ABC) transporters. AtPDR8, also called PEN3, is required for penetration resistance of Arabidopsis to nonadapted powdery mildew fungi. During fungal infection, plasma-membrane-localized PEN3 is concentrated at fungal entry sites, as part of the plant's focal immune response. Here, we show that the pen3 mutant is compromised in resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000. P. syringae pv. tomato DC3000 infection or treatment with a flagellin-derived peptide, flg22, induced strong focal accumulation of PEN3-green fluorescent protein. Interestingly, after an initial induction of PEN3 accumulation, P. syringae pv. tomato DC3000 but not the type-HI-secretion-deficient mutant hrcC could suppress PEN3 accumulation. Moreover, transgenic overexpression of the P. syrhzgae pv. tomato DC3000 effector AvrPto was sufficient to suppress PEN3 focal accumulation in response to flg22. Analyses of P. syringae pv. tomato DC3000 effector deletion mutants showed that individual effectors, including AvrPto, appear to be insufficient to suppress PEN3 accumulation when delivered by bacteria, suggesting a requirement for a combined action of multiple effectors. Collectively, our results indicate that PEN3 plays a positive role in plant resistance to a bacterial pathogen and show that focal accumulation of PEN3 protein may be a useful cellular response marker for the Arabidopsis-P. syringae interaction.
引用
收藏
页码:861 / 867
页数:7
相关论文
共 50 条
[1]   A Prominent Role for RCAR3-Mediated ABA Signaling in Response to Pseudomonas syringae pv. tomato DC3000 Infection in Arabidopsis [J].
Lim, Chae Woo ;
Luan, Sheng ;
Lee, Sung Chul .
PLANT AND CELL PHYSIOLOGY, 2014, 55 (10) :1691-1703
[2]   Wound-induced polypeptides improve resistance against Pseudomonas syringae pv. tomato DC3000 in Arabidopsis [J].
Yu, Liangliang ;
Wang, Yawen ;
Liu, Yan ;
Li, Ningning ;
Yan, Junhui ;
Luo, Li .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2018, 504 (01) :149-156
[3]   AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000 [J].
Markel, Eric ;
Stodghill, Paul ;
Bao, Zhongmeng ;
Myers, Christopher R. ;
Swingle, Bryan .
JOURNAL OF BACTERIOLOGY, 2016, 198 (17) :2330-2344
[4]   Resistance Inducers Modulate Pseudomonas syringae pv. Tomato Strain DC3000 Response in Tomato Plants [J].
Scalschi, Loredana ;
Camanes, Gemma ;
Llorens, Eugenio ;
Fernandez-Crespo, Emma ;
Lopez, Maria M. ;
Garcia-Agustin, Pilar ;
Vicedo, Begonya .
PLOS ONE, 2014, 9 (09)
[5]   Regulons of Three Pseudomonas syringae pv. tomato DC3000 Iron Starvation Sigma Factors [J].
Markel, Eric ;
Butcher, Bronwyn G. ;
Myers, Christopher R. ;
Stodghill, Paul ;
Cartinhour, Sam ;
Swingle, Bryan .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) :725-727
[6]   Pseudomonas syringae pv. tomato DC3000: A Model Pathogen for Probing Disease Susceptibility and Hormone Signaling in Plants [J].
Xin, Xiu-Fang ;
He, Sheng Yang .
ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 51, 2013, 51 :473-498
[7]   Mqo, a Tricarboxylic Acid Cycle Enzyme, Is Required for Virulence of Pseudomonas syringae pv. tomato Strain DC3000 on Arabidopsis thaliana [J].
Mellgren, Eve M. ;
Kloek, Andrew P. ;
Kunkel, Barbara N. .
JOURNAL OF BACTERIOLOGY, 2009, 191 (09) :3132-3141
[8]   Biophysical and proteomic analyses of Pseudomonas syringae pv. tomato DC3000 extracellular vesicles suggest adaptive functions during plant infection [J].
Janda, Martin ;
Rybak, Katarzyna ;
Krassini, Laura ;
Meng, Chen ;
Feitosa-Junior, Oseias ;
Stigliano, Egidio ;
Szulc, Beata ;
Sklenar, Jan ;
Menke, Frank L. H. ;
Malone, Jacob G. ;
Brachmann, Andreas ;
Klingl, Andreas ;
Ludwig, Christina ;
Robatzek, Silke .
MBIO, 2023, 14 (04)
[9]   Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea [J].
Zhang, Huijuan ;
Huang, Lei ;
Dai, Yi ;
Liu, Shixia ;
Hong, Yongbo ;
Tian, Limei ;
Huang, Lihong ;
Cao, Zhongye ;
Li, Dayong ;
Song, Fengming .
FRONTIERS IN PLANT SCIENCE, 2015, 6
[10]   A Draft Genome Sequence of Pseudomonas syringae pv. tomato T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000 [J].
Almeida, Nalvo F. ;
Yan, Shuangchun ;
Lindeberg, Magdalen ;
Studholme, David J. ;
Schneider, David J. ;
Condon, Bradford ;
Liu, Haijie ;
Viana, Carlos J. ;
Warren, Andrew ;
Evans, Clive ;
Kemen, Eric ;
MacLean, Dan ;
Angot, Aurelie ;
Martin, Gregory B. ;
Jones, Jonathan D. ;
Collmer, Alan ;
Setubal, Joao C. ;
Vinatzer, Boris A. .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (01) :52-62