Cardiomyocyte Imaging Using Real-Time Spatial Light Interference Microscopy (SLIM)

被引:21
作者
Bhaduri, Basanta [1 ]
Wickland, David [1 ]
Wang, Ru [1 ]
Chan, Vincent [2 ]
Bashir, Rashid [1 ,2 ]
Popescu, Gabriel [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
[2] Univ Illinois, Dept Bioengn, Urbana, IL USA
来源
PLOS ONE | 2013年 / 8卷 / 02期
基金
美国国家科学基金会;
关键词
QUANTITATIVE PHASE; CELL; CONTRAST; SUBWAVELENGTH; TOMOGRAPHY;
D O I
10.1371/journal.pone.0056930
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Spatial light interference microscopy (SLIM) is a highly sensitive quantitative phase imaging method, which is capable of unprecedented structure studies in biology and beyond. In addition to the pi/2 shift introduced in phase contrast between the scattered and unscattered light from the sample, 4 phase shifts are generated in SLIM, by increments of pi/2 using a reflective liquid crystal phase modulator (LCPM). As 4 phase shifted images are required to produce a quantitative phase image, the switching speed of the LCPM and the acquisition rate of the camera limit the acquisition rate and, thus, SLIM's applicability to highly dynamic samples. In this paper we present a fast SLIM setup which can image at a maximum rate of 50 frames per second and provide in real-time quantitative phase images at 50/4 = 12.5 frames per second. We use a fast LCPM for phase shifting and a fast scientific-grade complementary metal oxide semiconductor (sCMOS) camera (Andor) for imaging. We present the dispersion relation, i.e. decay rate vs. spatial mode, associated with dynamic beating cardiomyocyte cells from the quantitative phase images obtained with the real-time SLIM system.
引用
收藏
页数:7
相关论文
共 37 条
  • [1] Quantitative optical phase microscopy
    Barty, A
    Nugent, KA
    Paganin, D
    Roberts, A
    [J]. OPTICS LETTERS, 1998, 23 (11) : 817 - 819
  • [2] Cell refractive index tomography by digital holographic microscopy
    Charrière, F
    Marian, A
    Montfort, F
    Kuehn, J
    Colomb, T
    Cuche, E
    Marquet, P
    Depeursinge, C
    [J]. OPTICS LETTERS, 2006, 31 (02) : 178 - 180
  • [3] Tomographic phase microscopy
    Choi, Wonshik
    Fang-Yen, Christopher
    Badizadegan, Kamran
    Oh, Seungeun
    Lue, Niyom
    Dasari, Ramachandra R.
    Feld, Michael S.
    [J]. NATURE METHODS, 2007, 4 (09) : 717 - 719
  • [4] Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices
    Ding, Huafeng
    Wang, Zhuo
    Liang, Xing
    Boppart, Stephen A.
    Tangella, Krishna
    Popescu, Gabriel
    [J]. OPTICS LETTERS, 2011, 36 (12) : 2281 - 2283
  • [5] Fourier Transform Light Scattering of Inhomogeneous and Dynamic Structures
    Ding, Huafeng
    Wang, Zhuo
    Nguyen, Freddy
    Boppart, Stephen A.
    Popescu, Gabriel
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (23)
  • [6] Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence
    Dubois, F
    Joannes, L
    Legros, JC
    [J]. APPLIED OPTICS, 1999, 38 (34) : 7085 - 7094
  • [7] Dunn G.A., 1998, CELL BIOL LAB HDB
  • [8] A 5.5Mpixel 100 Frames/sec Wide Dynamic Range Low Noise CMOS Image Sensor for Scientific Applications
    Fowler, Boyd
    Liu, Chiao
    Mims, Steve
    Balicki, Janusz
    Li, Wang
    Do, Hung
    Appelbaum, Jeff
    Vu, Paul
    [J]. SENSORS, CAMERAS, AND SYSTEMS FOR INDUSTRIAL/SCIENTIFIC APPLICATIONS XI, 2010, 7536
  • [9] A NEW MICROSCOPIC PRINCIPLE
    GABOR, D
    [J]. NATURE, 1948, 161 (4098) : 777 - 778
  • [10] Hilbert phase microscopy for investigating fast dynamics in transparent systems
    Ikeda, T
    Popescu, G
    Dasari, RR
    Feld, MS
    [J]. OPTICS LETTERS, 2005, 30 (10) : 1165 - 1167