Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2

被引:340
作者
Wei, Yi [1 ]
Zheng, Jiaxin [1 ]
Cui, Suihan [1 ]
Song, Xiaohe [1 ]
Su, Yantao [1 ]
Deng, Wenjun [1 ]
Wu, Zhongzhen [1 ]
Wang, Xinwei [1 ]
Wang, Weidong [2 ]
Rao, Mumin [3 ]
Lin, Yuan [1 ]
Wang, Chongmin [4 ]
Amine, Khalil [5 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[2] Shenzhen Tianjiao Technol Dev Co Ltd, Shenzhen 518119, Peoples R China
[3] Shenzhen OptimumNano Energy Co Ltd, Shenzhen 518118, Peoples R China
[4] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, Electrochem Technol Program, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
POSITIVE ELECTRODE MATERIALS; ELASTIC BAND METHOD; ELECTROCHEMICAL PROPERTIES; COBALT SUBSTITUTION; CATHODE MATERIAL; PERFORMANCE; MORPHOLOGY; CAPACITY;
D O I
10.1021/jacs.5b04040
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using ab initio calculations combined with experiments, we clarified how the kinetics of Li-ion diffusion can be tuned in LiNixMnyCozO2 (NMC, x + y + z = 1) materials. It is found that Li-ions tend to choose oxygen dumbbell hopping (ODH) at the early stage of charging (delithiation), and tetrahedral site hopping (TSH) begins to dominate when more than 1/3 Li-ions are extracted. In both ODH and TSH, the Li-ions surrounded by nickel (especially with low valence state) are more likely to diffuse with low activation energy and form an advantageous path. The Li slab space, which also contributes to the effective diffusion barriers, is found to be closely associated with the delithiation process (Ni oxidation) and the contents of Ni, Co, and Mn.
引用
收藏
页码:8364 / 8367
页数:4
相关论文
共 25 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] Positive Electrode Materials for Li-Ion and Li-Batteries
    Ellis, Brian L.
    Lee, Kyu Tae
    Nazar, Linda F.
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 691 - 714
  • [3] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [4] Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries
    Gu, Meng
    Belharouak, Ilias
    Genc, Arda
    Wang, Zhiguo
    Wang, Dapeng
    Amine, Khalil
    Gao, Fei
    Zhou, Guangwen
    Thevuthasan, Suntharampillai
    Baer, Donald R.
    Zhang, Ji-Guang
    Browning, Nigel D.
    Liu, Jun
    Wang, Chongmin
    [J]. NANO LETTERS, 2012, 12 (10) : 5186 - 5191
  • [5] Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by the metal acetates decomposition method
    Guo, Jian
    Jiao, Li Fang
    Yuan, Hua Tang
    Li, Hai Xia
    Zhang, Ming
    Wang, Yong Mei
    [J]. ELECTROCHIMICA ACTA, 2006, 51 (18) : 3731 - 3735
  • [6] A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    Henkelman, G
    Uberuaga, BP
    Jónsson, H
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) : 9901 - 9904
  • [7] Effect of synthesis conditions on electrochemical properties of LiNi1-yCOyO2 cathode for lithium rechargeable batteries
    Hwang, BJ
    Santhanam, R
    Chen, CH
    [J]. JOURNAL OF POWER SOURCES, 2003, 114 (02) : 244 - 252
  • [8] Factors that affect Li mobility in layered lithium transition metal oxides
    Kang, Kisuk
    Ceder, Gerbrand
    [J]. PHYSICAL REVIEW B, 2006, 74 (09)
  • [9] Electrodes with high power and high capacity for rechargeable lithium batteries
    Kang, KS
    Meng, YS
    Bréger, J
    Grey, CP
    Ceder, G
    [J]. SCIENCE, 2006, 311 (5763) : 977 - 980
  • [10] Structure, morphology and electrochemical properties of LiNi0.5Mn0.5-xCOxO2 prepared by solid state reaction
    Li, DC
    Sasaki, Y
    Kageyama, M
    Kobayakawa, K
    Sato, Y
    [J]. JOURNAL OF POWER SOURCES, 2005, 148 (148) : 85 - 89