Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves

被引:23
作者
Balakrishnan, Jennifer S. [1 ]
Besser, Amnon [2 ]
Mueller, J. Steffen [3 ]
机构
[1] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Ben Gurion Univ Negev, Dept Math, POB 653, IL-84105 Beer Sheva, Israel
[3] Univ Hamburg, Fachbereich Math, Bundesstr 55, D-20146 Hamburg, Germany
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2016年 / 720卷
基金
英国工程与自然科学研究理事会;
关键词
SELMER VARIETIES; FUNDAMENTAL GROUP; ELLIPTIC-CURVES;
D O I
10.1515/crelle-2014-0048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a formula for the component at p of the p-adic height pairing of a divisor of degree 0 on a hyperelliptic curve. We use this to give a Chabauty-like method for finding p-adic approximations to p-integral points on such curves when the Mordell-Weil rank of the Jacobian equals the genus. In this case we get an explicit bound for the number of such p-integral points, and we are able to use the method in explicit computation. An important aspect of the method is that it only requires a basis of the Mordell-Weil group tensored with Q.
引用
收藏
页码:51 / 79
页数:29
相关论文
共 43 条
[31]   MASSEY PRODUCTS FOR ELLIPTIC CURVES OF RANK 1 [J].
Kim, Minhyong .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) :725-747
[32]   The Unipotent Albanese Map and Selmer Varieties for Curves [J].
Kim, Minhyong .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2009, 45 (01) :89-133
[33]  
Kuhn U., 2012, PREPRINT
[34]  
Lang S., 1988, Introduction to Arakelov theory
[35]  
McCallum W., 2012, Explicit methods in number theory, V36, P99
[36]   COMPLETE CLASSIFICATION OF FIBERS IN PENCILS OF CURVES OF GENUS-2 [J].
NAMIKAWA, Y ;
UENO, K .
MANUSCRIPTA MATHEMATICA, 1973, 9 (02) :143-186
[37]  
Penrose R., 1955, P CAMBRIDGE PHILOS S, V51, P406, DOI DOI 10.1017/S0305004100030401
[38]   Explicit Chabauty over number fields [J].
Siksek, Samir .
ALGEBRA & NUMBER THEORY, 2013, 7 (04) :765-793
[39]   On the height constant for curves of genus two, II [J].
Stoll, M .
ACTA ARITHMETICA, 2002, 104 (02) :165-182
[40]   Implementing 2-descent for Jacobians of hyperelliptic curves [J].
Stoll, M .
ACTA ARITHMETICA, 2001, 98 (03) :245-277