Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production

被引:26
作者
Dai, Feng [1 ,2 ]
Liu, Bin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
关键词
Chemotaxis-haptotaxis; General logistic source; Nonlinear signal production; Uniform boundedness; Asymptotic stability; KELLER-SEGEL SYSTEM; LARGE TIME BEHAVIOR; CLASSICAL-SOLUTIONS; GLOBAL BOUNDEDNESS; BLOW-UP; INVASION; SOLVABILITY; EXISTENCE; DIFFUSION; TISSUE;
D O I
10.1016/j.jde.2020.07.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the quasilinear chemotaxis-haptotaxis model of cancer invasion {u(t) = del.(D(u)del u) + del.(S-1(u)del v) + del. S-2(u)del w) + f(u,w), x is an element of Omega, t > 0, tau v(t) = Delta v - v + g(1)(w)g(2)(u), x is an element of Omega, t > 0, w(t) = -vw, x is an element of Omega, t > 0 in a bounded smooth domain Omega subset of R-N (N >= 1) with zero-flux boundary conditions, where tau is an element of {0, 1}, the functions D(u), S-1(u), S-2(u) is an element of C-2 ([0, infinity)), f(u, w) is an element of C-1 ([0, infinity)(2)), g(1)(w), g(2)(u) is an element of C-1 ([0, infinity)) ful-fill D(u) >= C-D(u + 1)(-alpha), S-1(u) < chi u(u + 1)(beta-1), S-2(u) <= xi u(u + 1)(gamma-1), f(u, w) <= u(a - mu ur(-1)-lambda w), f (0, w) >= 0, g(1)(w) >= 0, 0 <= g(2)(u) <= Ku(kappa) with C-D, chi, xi, mu, kappa > 0, lambda >= 0, r > 1 and alpha, beta, gamma, a is an element of R. Under specific parameters conditions, it is shown that for any appropriately regular initial data, the associated initial-boundary value problem admits a globally bounded classical solution. Moreover, when f = u(a - mu ur(-1) - lambda w), g(1)(w) 1 and g(2)(u) u(kappa), the asymptotic stability of solutions is also investigated. Specifically, for some a(0), mu(0) > 0 independent of (u(0), v(0)), the bounded classical solution (u, v, w) exponentially converges to ((a/mu)(1/r-1), (a/mu)(kappa/r-1), 0) in L-p (Omega) x L-infinity (Omega) x W-1,W-infinity (Omega) for any p >= 2 if a > a(0) and mu > mu(0). These results improve or extend previously known ones, and partial results are new. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:10839 / 10918
页数:80
相关论文
共 78 条
[1]  
Alikakos ND., 1979, Commun. Partial Differ. Equ, V4, P827, DOI [DOI 10.1080/03605307908820113, 10.1080/03605307908820113]
[2]   SIGNAL TRANSDUCTION FOR CHEMOTAXIS AND HAPTOTAXIS BY MATRIX MOLECULES IN TUMOR-CELLS [J].
AZNAVOORIAN, S ;
STRACKE, ML ;
KRUTZSCH, H ;
SCHIFFMANN, E ;
LIOTTA, LA .
JOURNAL OF CELL BIOLOGY, 1990, 110 (04) :1427-1438
[3]  
Bai XL, 2016, INDIANA U MATH J, V65, P553
[4]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[5]   Boundedness in a three-dimensional chemotaxis-haptotaxis model [J].
Cao, Xinru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (01)
[6]   GLOBAL BOUNDED SOLUTIONS OF THE HIGHER-DIMENSIONAL KELLER-SEGEL SYSTEM UNDER SMALLNESS CONDITIONS IN OPTIMAL SPACES [J].
Cao, Xinru .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) :1891-1904
[7]   Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source [J].
Cao, Xinru ;
Zheng, Sining .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (15) :2326-2330
[8]  
Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399
[9]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[10]   Large-Data Solutions in a Three-Dimensional Chemotaxis-Haptotaxis System with Remodeling of Non-diffusible Attractant: The Role of Sub-linear Production of Diffusible Signal [J].
Chen, Zhen ;
Tao, Youshan .
ACTA APPLICANDAE MATHEMATICAE, 2019, 163 (01) :129-143