Abelian integrals and limit cycles

被引:43
作者
Dumortier, Freddy
Roussarie, Robert
机构
[1] Univ Hasselt, B-3590 Diepenbeek, Belgium
[2] Univ Bourgogne, Inst Math Bourgogne, CNRS, UMR 5584, F-21078 Dijon, France
关键词
planar vector field; Hamiltonian perturbation; limit cycle; Abelian integral; two-saddle cycle; asymptotic scale deformation;
D O I
10.1016/j.jde.2005.08.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper deals with generic perturbations from a Hamiltonian planar vector field and more precisely with the number and bifurcation pattern of the limit cycles. In this paper we show that near a 2-saddle cycle, the number of limit cycles produced in unfoldings with one unbroken connection, can exceed the number of zeros of the related Abelian integral, even if the latter represents a stable elementary catastrophe. We however also show that in general, finite codimension of the Abelian integral leads to a finite upper bound on the local cyclicity. In the treatment, we introduce the notion of simple asymptotic scale deformation. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:116 / 165
页数:50
相关论文
共 15 条
[1]  
ARNOLD V, 1985, MONOGR MATH, V83
[2]  
ARNOLD VI, 1985, SINGULARITIES DIFFER, V2
[3]  
ARNOLD VI, 1989, RUSS MATH SURV, V44, P191
[4]   Hopf-takens bifurcations and centres [J].
Caubergh, M ;
Dumortier, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 202 (01) :1-31
[5]  
Dieudonne J., 1980, CALCUL INFINITESIMAL
[6]   ELEMENTARY GRAPHICS OF CYCLICITY-1 AND CYCLICITY-2 [J].
DUMORTIER, F ;
ROUSSARIE, R ;
ROUSSEAU, C .
NONLINEARITY, 1994, 7 (03) :1001-1043
[7]  
DUMORTIER F, 1991, LECT NOTES MATH, V1480, pR5
[8]  
HARASHIMAN N, 1966, LECT NOTES MATH, V25
[9]  
Hardy G.H., 1971, ORDERS INFINITY
[10]   REAL ANALYTIC VARIETIES WITH THE FINITENESS PROPERTY AND COMPLEX ABELIAN-INTEGRALS [J].
KHOVANSKII, AG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (02) :119-127