Skyline Computation with Noisy Comparisons

被引:3
作者
Groz, Benoit [1 ]
Mallmann-Trenn, Frederik [2 ]
Mathieu, Claire [3 ,4 ]
Verdugo, Victor [5 ,6 ]
机构
[1] Univ Paris Saclay, LRI, CNRS, Gif Sur Yvette, France
[2] Kings Coll London, London, England
[3] CNRS, Paris, France
[4] IRIF, Paris, France
[5] London Sch Econ & Polit Sci, London, England
[6] Univ OHiggins, Ohiggins, Chile
来源
COMBINATORIAL ALGORITHMS, IWOCA 2020 | 2020年 / 12126卷
关键词
Skyline; Noisy comparisons; Fault-tolerance; ALGORITHMS;
D O I
10.1007/978-3-030-48966-3_22
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given a set of n points in a d-dimensional space, we seek to compute the skyline, i.e., those points that are not strictly dominated by any other point, using few comparisons between elements. We adopt the noisy comparison model [15] where comparisons fail with constant probability and confidence can be increased through independent repetitions of a comparison. In this model motivated by Crowdsourcing applications, Groz and Milo [18] show three bounds on the query complexity for the skyline problem. We improve significantly on that state of the art and provide two output-sensitive algorithms computing the skyline with respective query complexity O(ndlog(dk/delta)) and O(ndklog(k/delta)), where k is the size of the skyline and delta the expected probability that our algorithm fails to return the correct answer. These results are tight for low dimensions.
引用
收藏
页码:289 / 303
页数:15
相关论文
共 50 条
[21]   Real-Time Skyline Computation on Data Streams [J].
Rudenko, Lena ;
Endres, Markus .
NEW TRENDS IN DATABASES AND INFORMATION SYSTEMS, ADBIS 2018, 2018, 909 :20-28
[22]   Massively Parallel Skyline Computation For Processing-In-Memory Architectures [J].
Zois, Vasileios ;
Gupta, Divya ;
Tsotras, Vassilis J. ;
Najjar, Walid A. ;
Roy, Jean-Francois .
27TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT 2018), 2018,
[23]   Efficient computation of G-Skyline groups on massive data [J].
Han, Xixian ;
Wang, Jinbao ;
Li, Jianzhong ;
Gao, Hong .
INFORMATION SCIENCES, 2022, 587 :300-322
[24]   Scalable skyline computation using a balanced pivot selection technique [J].
Lee, Jongwuk ;
Hwang, Seung-won .
INFORMATION SYSTEMS, 2014, 39 :1-21
[25]   EVALUATION OF COMMUNICATION AND COMPUTATION EFFICIENT ALGORITHMS FOR DISTRIBUTED SKYLINE QUERIES [J].
Sunitha, T. ;
Indu, L. .
2013 INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND EMBEDDED SYSTEMS (ICICES), 2013, :201-206
[26]   SkyFlow: Heterogeneous streaming for skyline computation using FlowGraph and SYCL [J].
Carlos Romero, Jose ;
Navarro, Angeles ;
Rodriguez, Andres ;
Asenjo, Rafael .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 141 :269-283
[27]   Top-k and Clustering with Noisy Comparisons [J].
Davidson, Susan ;
Khanna, Sanjeev ;
Milo, Tova ;
Roy, Sudeepa .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2014, 39 (04)
[28]   Parallel Algorithms for Select and Partition with Noisy Comparisons [J].
Braverman, Mark ;
Mao, Jieming ;
Weinberg, S. Matthew .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :851-862
[29]   Efficient Skyline Computation For optimal Service Composition with Fuzzy preference relationships [J].
Rhimi, Fatma ;
Ben Yahia, Saloua ;
Ben Ahmed, Samir .
2015 INTERNATIONAL SYMPOSIUM ON NETWORKS, COMPUTERS AND COMMUNICATIONS (ISNCC 2015), 2015,
[30]   A two-phase data space partitioning for efficient skyline computation [J].
Aziz Nasridinov ;
Jong-Hyeok Choi ;
Young-Ho Park .
Cluster Computing, 2017, 20 :3617-3628