Hybrid hierarchical clustering with applications to microarray data

被引:95
作者
Chipman, H [1 ]
Tibshirani, R
机构
[1] Acadia Univ, Dept Math & Stat, Wolfville, NS B4P 2R6, Canada
[2] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
bottom-up clustering; mutual cluster; top-down clustering;
D O I
10.1093/biostatistics/kxj007
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a hybrid clustering method that combines the strengths of bottom-up hierarchical clustering with that of top-down clustering. The first method is good at identifying small clusters but not large ones; the strengths are reversed for the second method. The hybrid method is built on the new idea of a mutual cluster: a group of points closer to each other than to any other points. Theoretical connections between mutual clusters and bottom-up clustering methods are established, aiding in their interpretation and providing an algorithm for identification of mutual clusters. We illustrate the technique on simulated and real microarray datasets.
引用
收藏
页码:286 / 301
页数:16
相关论文
共 12 条
  • [1] Chipman H, 2003, INTERDISC STAT, P159
  • [2] Chipman HA, 1998, COMP SCI STAT, V30, P84
  • [3] Cluster analysis and display of genome-wide expression patterns
    Eisen, MB
    Spellman, PT
    Brown, PO
    Botstein, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) : 14863 - 14868
  • [4] Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
  • [5] Gersho A., 1992, VECTOR QUANTIZATION
  • [6] Gordon A, 1999, Classification
  • [7] Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
  • [8] Kaufman L., 1990, FINDING GROUPS DATA
  • [9] Kohonen T., 1989, SELF ORG ASS MEMORY
  • [10] LLOYD SP, 1982, IEEE T INFORM THEORY, V28, P129, DOI 10.1109/TIT.1982.1056489