Bifurcation and chaos in some relative rotation systems with Mathieu-Duffing oscillator

被引:4
作者
Hou Dong-Xiao [1 ]
Zhao Hong-Xu [2 ]
Liu Bin [2 ]
机构
[1] Northeastern Univ Qinhuangdao, Dept Control Engn, Qinhuangdao 066004, Peoples R China
[2] YanShan Univ, Coll Informat Sci & Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
relatively rotation; Mathieu-Duffing; chaos; Melnikov method; NONLINEAR DYNAMIC-SYSTEM; STABILITY;
D O I
10.7498/aps.62.234501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic equation of relative rotation nonlinear dynamic system with Mathieu-Duffing oscillator is investigated. Firstly, the bifurcation response align of the relative rotation system under primary resonance-basic parameters condition is deduced using the method of multiple scales, and a singularity analysis is employed to obtain the transition set of steady motion. Secondly, a global bifurcation of the system, some probable routes leading to chaos and multiple times leading to chaos with parametric and external excitation amplitude changes have been discussed by using Melnikov method, and the necessary condition for chaotic motion of the system is presented. Finally, a numerical method is employed to further prove the effectiveness of the theoretical research.
引用
收藏
页数:11
相关论文
共 17 条
  • [1] Dynamics and chaos control of gyrostat satellite
    Aslanov, Vladimir
    Yudintsev, Vadim
    [J]. CHAOS SOLITONS & FRACTALS, 2012, 45 (9-10) : 1100 - 1107
  • [2] ROTATIONAL RELATIVITY THEORY
    CARMELI, M
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1986, 25 (01) : 89 - 94
  • [3] FIELD-THEORY ON RXS3 TOPOLOGY .1. THE KLEIN-GORDON AND SCHRODINGER-EQUATIONS
    CARMELI, M
    [J]. FOUNDATIONS OF PHYSICS, 1985, 15 (02) : 175 - 184
  • [4] Study on a new nonlinear parametric excitation equation: Stability and bifurcation
    Chen Si-yu
    Tang Jin-yuan
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) : 1109 - 1118
  • [5] Bifurcations and chaos in three-well Duffing system with one external forcing
    Huang, Jicai
    Jing, Zhujun
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (03) : 1449 - 1466
  • [6] The periodic solution problem of a relative rotation nonlinear dynamic system with time-varying stiffness
    Li Xiao-Jing
    Chen Xuan-Qing
    Yan Jing
    [J]. ACTA PHYSICA SINICA, 2013, 62 (09)
  • [7] Stability analysis of a relative rotation time-delay nonlinear dynamic system
    Liu Hao-Ran
    Zhu Zhan-Long
    Shi Pei-Ming
    [J]. ACTA PHYSICA SINICA, 2010, 59 (10) : 6770 - 6777
  • [8] Luo SK, 1998, APPL MATH MECH-ENGL, V19, P45
  • [9] LUO SK, 1996, J BEIJING I TECHNOL, V16, P154
  • [10] Analysis of bifurcation and chaos in double-well Duffing system via Laguerre polynomial approximation
    Ma Shao-Juan
    Xu Wei
    Li Wei
    [J]. ACTA PHYSICA SINICA, 2006, 55 (08) : 4013 - 4019