GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method

被引:33
|
作者
Wei, J.
Kruis, F. E.
机构
[1] Univ Duisburg Essen, Inst Nanostruct & Technol, Fac Engn Sci, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, CENIDE Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
关键词
Monte Carlo; Particle; Coagulation; Inverse method; GPU; CUDA; DISCRETE-SECTIONAL MODEL; AEROSOL COAGULATION; DYNAMICS; GROWTH;
D O I
10.1016/j.jcp.2013.04.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulating particle coagulation using Monte Carlo methods is in general a challenging computational task due to its numerical complexity and the computing cost. Currently, the lowest computing costs are obtained when applying a graphic processing unit (GPU) originally developed for speeding up graphic processing in the consumer market. In this article we present an implementation of accelerating a Monte Carlo method based on the Inverse scheme for simulating particle coagulation on the GPU. The abundant data parallelism embedded within the Monte Carlo method is explained as it will allow an efficient parallelization of the MC code on the GPU. Furthermore, the computation accuracy of the MC on GPU was validated with a benchmark, a CPU-based discrete-sectional method. To evaluate the performance gains by using the GPU, the computing time on the GPU against its sequential counterpart on the CPU were compared. The measured speedups show that the GPU can accelerate the execution of the MC code by a factor 10-100, depending on the chosen particle number of simulation particles. The algorithm shows a linear dependence of computing time with the number of simulation particles, which is a remarkable result in view of the n(2) dependence of the coagulation. (c) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:67 / 79
页数:13
相关论文
共 50 条
  • [1] GPU-accelerated inverse identification of radiative properties of particle suspensions in liquid by the Monte Carlo method
    Ma, C. Y.
    Zhao, J. M.
    Liu, L. H.
    Zhang, L.
    Li, X. C.
    Jiang, B. C.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 172 : 146 - 159
  • [2] Effective reconstruction of bioluminescence tomography based on GPU-accelerated inverse Monte Carlo method
    Ren, Shenghan
    Wang, Lin
    Zeng, Qi
    Chen, Duofang
    Chen, Xueli
    Liang, Jimin
    AIP ADVANCES, 2020, 10 (10)
  • [3] GPU-accelerated Monte Carlo simulation of MV-CBCT
    Shi, Mengying
    Myronakis, Marios
    Jacobson, Matthew
    Ferguson, Dianne
    Williams, Christopher
    Lehmann, Mathias
    Baturin, Paul
    Huber, Pascal
    Fueglistaller, Rony
    Lozano, Ingrid Valencia
    Harris, Thomas
    Morf, Daniel
    Berbeco, Ross, I
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (23):
  • [4] A GPU-Accelerated Monte Carlo Method for BNCT Dose Calculations
    Wang, Y.
    Li, S.
    Wu, J.
    Ye, Z.
    Tao, L.
    Pei, X.
    Xu, X. G.
    MEDICAL PHYSICS, 2024, 51 (10) : 7748 - 7748
  • [5] GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications
    Franciosini, G.
    Battistoni, G.
    Cerqua, A.
    De Gregorio, A.
    De Maria, P.
    De Simoni, M.
    Dong, Y.
    Fischetti, M.
    Marafini, M.
    Mirabelli, R.
    Muscato, A.
    Patera, V
    Salvati, F.
    Sarti, A.
    Sciubba, A.
    Toppi, M.
    Traini, G.
    Trigilio, A.
    Schiavi, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (04):
  • [6] GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar
    Liao, Yupeng
    Shangguan, Mingjia
    Yang, Zhifeng
    Lin, Zaifa
    Wang, Yuanlun
    Li, Sihui
    REMOTE SENSING, 2023, 15 (21)
  • [7] Scatter Correction Based on GPU-Accelerated Full Monte Carlo Simulation for Brain PET/MRI
    Ma, Bo
    Gaens, Michaela
    Caldeira, Liliana
    Bert, Julian
    Lohmann, Philipp
    Tellmann, Lutz
    Lerche, Christoph
    Scheins, Jurgen
    Kops, Elena Rota
    Xu, Hancong
    Lenz, Mirjam
    Pietrzyk, Uwe
    Shah, Nadim Jon
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (01) : 140 - 151
  • [8] GPU-ACCELERATED AND CPU SIMD OPTIMIZED MONTE CARLO SIMULATION OF φ4 MODEL
    Bialas, Piotr
    Kowal, Jakub
    Strzelecki, Adam
    COMPUTING AND INFORMATICS, 2014, 33 (05) : 1191 - 1208
  • [9] GPU-accelerated Monte Carlo Based Scatter Correction in Brain PET/MR
    Gaens, Michaela
    Bert, Julien
    Pietrzyk, Uwe
    Shah, N. Jon
    Visvikis, Dimitris
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [10] GPU-Accelerated Ray Tracing for Visualizing Monte Carlo Models
    Nease, Brian
    Corser, Joel
    Burke, Paul
    JOINT INTERNATIONAL CONFERENCE ON SUPERCOMPUTING IN NUCLEAR APPLICATIONS + MONTE CARLO, SNA + MC 2024, 2024, 302