A REMARK ON NORMALIZATIONS IN A LOCAL LARGE DEVIATIONS PRINCIPLE FOR INHOMOGENEOUS BIRTH - AND - DEATH PROCESS

被引:5
作者
Logachov, A., V [1 ,2 ,3 ,4 ]
Suhov, Y. M. [5 ,6 ]
Vvedenskaya, N. D. [7 ]
Yambartsev, A. A. [8 ]
机构
[1] Sobolev Inst Math, Lab Probabil Theory & Math Stat, 4 Koptyuga Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
[3] Siberian State Univ Geosyst & Technol, Dep High Math, 10 Plahotnogo Str, Novosibirsk 630108, Russia
[4] Novosibirsk State Univ Econ & Management, 56 Kamenskaya Str, Novosibirsk 630099, Russia
[5] Penn State Univ, Dept Math, McAllister Buid, State Coll, PA 16802 USA
[6] Univ Cambridge, Stat Lab, DPMMS, Wilberforce Rd, Cambridge CB3 0WB, England
[7] RAS, Inst Informat Transmiss Problems, 19 Bolshoj Karetnyj Per, Moscow 127051, Russia
[8] Univ Sao Paulo, Inst Math & Stat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2020年 / 17卷
基金
巴西圣保罗研究基金会; 俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
birth - and - death process; normalization (scaling); large deviations principle; local large deviations principle; rate function;
D O I
10.33048/semi.2020.17.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work is a continuation of [13]. We consider a continuous-time birth - and - death process in which the transition rates are regularly varying function of the process position. We establish rough exponential asymptotic for the probability that a sample path of a normalized process lies in a neighborhood of a given nonnegative continuous function. We propose a variety of normalization schemes for which the large deviation functional preserves its natural integral form.
引用
收藏
页码:1258 / 1269
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 1998, Markov chains. 2
[2]  
[Anonymous], 1997, Markov Processes for Stochastic Modeling
[3]   Inequalities and principles of large deviations for the trajectories of processes with independent increments [J].
Borovkov, A. A. ;
Mogul'skii, A. A. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (02) :217-226
[4]   Computational methods for birth-death processes [J].
Crawford, Forrest W. ;
Ho, Lam Si Tung ;
Suchard, Marc A. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (02)
[5]  
Dynkin E.B., 1965, MARKOVSKIE PROTSESSY
[6]  
Feller W., 1971, An Introduction to Probability Theory and Its Applications, V2, DOI DOI 10.2307/2282584
[7]  
Ito K., 1963, LECT NOTES SERIES, V16
[8]  
Korolyuk V.S., 1985, A Manual on Probability Theory and Mathematical Statistics
[9]  
Logachov A.V., 2016, J. Math. Sci., V218, P28
[10]   Large deviations for excursions of non-homogeneous Markov processes [J].
Mogulskii, A. ;
Pechersky, E. ;
Yambartsev, A. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 :1-8