APPROXIMATE SOLUTIONS FOR DIFFUSION EQUATIONS ON CANTOR SPACE-TIME

被引:0
作者
Yang, Xiao-Jun [1 ,2 ]
Baleanu, Dumitru [3 ,4 ,5 ]
Zhong, Wei-Ping [6 ]
机构
[1] Zhengzhou Normal Univ, Inst Software Sci, Zhengzhou 450044, Peoples R China
[2] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Peoples R China
[3] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[4] Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[5] Inst Space Sci, Magurele, Romania
[6] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou 221008, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2013年 / 14卷 / 02期
关键词
diffusion equations; adomian decomposition method; local fractional operators; approximate solutions; Cantor sets; HOMOTOPY PERTURBATION METHOD; BOUNDARY-VALUE-PROBLEMS; FRACTIONAL DIFFUSION; DECOMPOSITION METHOD; ANOMALOUS DIFFUSION; ORDER; LAPLACE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we investigate diffusion equations on Cantor space-time and we obtain approximate solutions by using the local fractional Adomian decomposition method derived from the local fractional operators. Analytical solutions are given in terms of the Mittag-Leffler functions defined on Cantor sets.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 63 条
[1]   A REVIEW OF THE DECOMPOSITION METHOD AND SOME RECENT RESULTS FOR NONLINEAR EQUATIONS [J].
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1990, 13 (07) :17-43
[2]  
Adomian G., 1994, Fundamental Theories of Physics
[3]  
[Anonymous], 2006, THEORY APPL FRACTION
[4]  
[Anonymous], 2011, J KING SAUD UNIV SCI, DOI DOI 10.1016/j.jksus.2010.06.024
[5]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[6]  
[Anonymous], INT J NONLINEAR MECH
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]   Generalized wave equation in nonlocal elasticity [J].
Atanackovic, T. M. ;
Stankovic, B. .
ACTA MECHANICA, 2009, 208 (1-2) :1-10
[9]   Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1893-1917
[10]   Time distributed-order diffusion-wave equation. I. Volterra-type equation [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1869-1891