The Generalized C Index for Internal Fuzzy Cluster Validity

被引:28
作者
Bezdek, James C. [1 ]
Moshtaghi, Masud [1 ]
Runkler, Thomas [2 ]
Leckie, Christopher [1 ]
机构
[1] Univ Melbourne, Dept Comp & Informat Sci, Parkville, Vic 3010, Australia
[2] Siemens AG Corp Technol, D-81739 Munich, Germany
基金
澳大利亚研究理事会;
关键词
Adjusted Rand index (ARI); C index; external cluster validity; fuzzy adjusted Rand index; fuzzy C index; fuzzy similarity relations; internal cluster validity; NUMBER;
D O I
10.1109/TFUZZ.2016.2540063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The C index is an internal cluster validity index that was introduced in 1970 as a way to define and identify a "best" crisp partition on n objects represented by either unlabeled feature vectors or dissimilarity matrix data. This index is often one of the better performers among the plethora of internal indices available for this task. This paper develops a soft generalization of the C index that can be used to evaluate sets of candidate partitions found by either fuzzy or probabilistic clustering algorithms. We define four generalizations based on relational transformations of the soft partition and, then, compare their performance to eight other popular internal fuzzy cluster indices using two methods of comparison (internal "best-c" and internal/ external (I/E) "best match"), six synthetic datasets, and six real-world labeled datasets. Our main conclusion is that the sum-min generalization is the second best performer in the best-c tests and the best performer in the I/E tests on small data.
引用
收藏
页码:1500 / 1512
页数:13
相关论文
共 42 条
[1]  
Al-Zoubi Moh'd Belal, 2008, Journal of Computer Sciences, V4, P252, DOI 10.3844/jcssp.2008.252.255
[2]   Comparing Fuzzy, Probabilistic, and Possibilistic Partitions [J].
Anderson, Derek T. ;
Bezdek, James C. ;
Popescu, Mihail ;
Keller, James M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) :906-918
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms, DOI 10.1007/978-1-4757-0450-1_3
[4]  
[Anonymous], STAT ANAL DATA MININ
[5]   An extensive comparative study of cluster validity indices [J].
Arbelaitz, Olatz ;
Gurrutxaga, Ibai ;
Muguerza, Javier ;
Perez, Jesus M. ;
Perona, Inigo .
PATTERN RECOGNITION, 2013, 46 (01) :243-256
[6]   Enhanced fuzzy clustering algorithm and cluster validity index for human perception [J].
Baskir, M. Bahar ;
Turksen, I. Burhan .
EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (03) :929-937
[7]   A geometric approach to cluster validity for normal mixtures [J].
J. C. Bezdek ;
W. Q. Li ;
Y. Attikiouzel ;
M. Windham .
Soft Computing, 1997, 1 (4) :166-179
[8]  
Bezdek J. C., 1973, Journal of Cybernetics, V3, P58, DOI 10.1080/01969727308546047
[9]  
Bezdek J. C., 1978, Fuzzy Sets and Systems, V1, P111, DOI 10.1016/0165-0114(78)90012-X
[10]  
Bezdek J. C., 1975, P 8 ANN INT C NUM TA, P143