Global well-posedness for KdV in Sobolev spaces of negative index

被引:0
|
作者
Colliander, J. [1 ]
Keel, M. [2 ]
Staffilani, G. [3 ]
Takaoka, H. [4 ]
Tao, T. [5 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Hokkaido Univ, Grad Sch Sci, Div Math, Sapporo, Hokkaido 0600810, Japan
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Korteweg-de Vries equation; nonlinear dispersive equations; bilinear estimates;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in H-s (R) for -3/10 < s.
引用
收藏
页数:7
相关论文
共 50 条