Higher-Order TV Methods-Enhancement via Bregman Iteration

被引:80
作者
Benning, Martin [1 ]
Brune, Christoph [2 ]
Burger, Martin [1 ]
Mueller, Jahn [1 ]
机构
[1] Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Total variation regularization; Higher order methods; Staircasing; Exact solutions; Bregman iteration; TOTAL VARIATION MINIMIZATION; REGULARIZATIONS; ALGORITHMS;
D O I
10.1007/s10915-012-9650-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we analyze and compare two recent variational models for image denoising and improve their reconstructions by applying a Bregman iteration strategy. One of the standard techniques in image denoising, the ROF-model (cf. Rudin et al. in Physica D 60:259-268, 1992), is well known for recovering sharp edges of a signal or image, but also for producing staircase-like artifacts. In order to overcome these model-dependent deficiencies, total variation modifications that incorporate higher-order derivatives have been proposed (cf. Chambolle and Lions in Numer. Math. 76:167-188, 1997; Bredies et al. in SIAM J. Imaging Sci. 3(3):492-526, 2010). These models reduce staircasing for reasonable parameter choices. However, the combination of derivatives of different order leads to other undesired side effects, which we shall also highlight in several examples. The goal of this paper is to analyze capabilities and limitations of the different models and to improve their reconstructions in quality by introducing Bregman iterations. Besides general modeling and analysis we discuss efficient numerical realizations of Bregman iterations and modified versions thereof.
引用
收藏
页码:269 / 310
页数:42
相关论文
共 33 条
[1]  
Alter F, 2005, INTERFACE FREE BOUND, V7, P29
[2]  
[Anonymous], IMAGE PROCESSING ANA
[3]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[4]  
Benning M., 2011, THESIS U MUNSTER MUN, P62
[5]  
Bertozzi A, 2005, CONTEMP MATH, V371, P29
[6]  
Bishop RL., 1980, TENSOR ANAL MANIFOLD
[7]   Total Generalized Variation [J].
Bredies, Kristian ;
Kunisch, Karl ;
Pock, Thomas .
SIAM JOURNAL ON IMAGING SCIENCES, 2010, 3 (03) :492-526
[8]  
Bregman L. M., 1967, USSR Comput Math Math Phys, V7, P200, DOI [10.1016/0041-5553(67)90040-7, DOI 10.1016/0041-5553(67)90040-7]
[9]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[10]   Inverse total variation flow [J].
Burger, M. ;
Frick, K. ;
Osher, S. ;
Scherzer, O. .
MULTISCALE MODELING & SIMULATION, 2007, 6 (02) :366-395