An elementary proof of the fundamental theorem of projective geometry

被引:69
作者
Faure, CA [1 ]
机构
[1] Lycee Cantonal Porrentruy, CH-2900 Porrentruy, Switzerland
关键词
projective geometry; fundamental theorem; Wigner's theorem;
D O I
10.1023/A:1014933313332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following version of the fundamental theorem is proved: Let V, W be vector spaces and g: P(V) \ E --> P(W) a morphism between the associated projective spaces. If the image of g is not contained in a line, then there exists a semilinear map f: V --> W which induces g. The difficulty lies in the fact that the homomorphism of division rings associated to the map f can be nonsurjective. As an application, a short proof of Wigner's theorem is also proposed.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 23 条
[1]  
[Anonymous], CORPS NONCOMMUTATIFS
[2]  
Artin E., 1957, GEOMETRIC ALGEBRA
[3]  
Baer R., 1952, LINEAR ALGEBRA PROJE
[4]  
BIRKHOFF G, 1948, AM MATH SOC COLL PUB, V25
[5]   GEOMETRIC CHARACTERIZATION OF LINEAR MAPPINGS [J].
BRAUNER, H .
MONATSHEFTE FUR MATHEMATIK, 1973, 77 (01) :10-20
[6]  
BUEKENHOUT F, 1995, HDB INCIDENCE GEOMET, P63
[7]  
Cohn P. M., 1977, ALGEBRA, VII
[8]   MORPHISMS OF PROJECTIVE GEOMETRIES AND OF CORRESPONDING LATTICES [J].
FAURE, CA ;
FROLICHER, A .
GEOMETRIAE DEDICATA, 1993, 47 (01) :25-40
[9]   MORPHISMS OF PROJECTIVE GEOMETRIES AND SEMILINEAR MAPS [J].
FAURE, CA ;
FROLICHER, A .
GEOMETRIAE DEDICATA, 1994, 53 (03) :237-262
[10]   DUALITIES FOR INFINITE-DIMENSIONAL PROJECTIVE GEOMETRIES [J].
FAURE, CA ;
FROLICHER, A .
GEOMETRIAE DEDICATA, 1995, 56 (03) :225-236