Li-CO2 Electrochemistry: A New Strategy for CO2 Fixation and Energy Storage

被引:410
作者
Qiao, Yu [1 ,2 ]
Yi, Jin [1 ]
Wu, Shichao [1 ,2 ]
Liu, Yang [2 ]
Yang, Sixie [3 ]
He, Ping [3 ]
Zhou, Haoshen [1 ,2 ,3 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, 1-1-1 Umezono, Tsukuba, Ibaraki 3058568, Japan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, 1-1-1 Tennoudai, Tsukuba, Ibaraki 3058573, Japan
[3] Nanjing Univ, Ctr Energy Storage Mat & Technol, Coll Engn & Appl Sci, Natl Lab Solid State Microstruct,Collaborat Innov, Nanjing 210093, Jiangsu, Peoples R China
关键词
LITHIUM-OXYGEN BATTERY; DIMETHYL-SULFOXIDE; CARBON-DIOXIDE; LI-O-2; BATTERY; AIR BATTERIES; REDUCTION; HYDROGENATION; ELECTROLYTE; CATALYSTS; METHANOL;
D O I
10.1016/j.joule.2017.07.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large energy is required for traditional CO2 fixation, leading to more CO2 emission and additional pollutants. Recently, integrating renewable energy with CO2 fixation has attracted increasing attention as a sustainable strategy. Here, based on a systematic investigation on aprotic Li-CO2 electrochemistry, we first provide an alternative strategy for either CO2 fixation or energy storage. Both strategies share the same CO2 reduction process with the formation of Li2CO3 and carbon. Subsequently, CO2 fixation is achieved through a rechargeable/irreversible oxidation process, during which Li2CO3 is decomposed, while the carbon obtained remains fixed. Moreover, a reversible Li-CO2 battery system has been realized based on co-oxidization of the resulting carbon and Li2CO3 using a Ru catalyst. Consequently, by shedding light on the fundamental reaction mechanism of aprotic Li-CO2 electrochemistry, the proof of concept presented here provides strong theoretical underpinning for developing flexible routes for both CO2 fixation and Li-CO2 energy storage.
引用
收藏
页码:359 / 370
页数:12
相关论文
共 34 条
[21]   Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO2 to Methanol [J].
Rezayee, Nomaan M. ;
Huff, Chelsea A. ;
Sanford, Melanie S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1028-1031
[22]   Amine Scrubbing for CO2 Capture [J].
Rochelle, Gary T. .
SCIENCE, 2009, 325 (5948) :1652-1654
[23]   Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase [J].
Schuchmann, K. ;
Mueller, V. .
SCIENCE, 2013, 342 (6164) :1382-1385
[24]   Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen [J].
Sharon, Daniel ;
Afri, Michal ;
Noked, Malachi ;
Garsuch, Arnd ;
Frimer, Aryeh A. ;
Aurbach, Doron .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (18) :3115-3119
[25]   CoCO3 submicrocube/graphene composites with high lithium storage capability [J].
Su, Liwei ;
Zhou, Zhen ;
Qin, Xue ;
Tang, Qiwei ;
Wu, Dihua ;
Shen, Panwen .
NANO ENERGY, 2013, 2 (02) :276-282
[26]   The Carbon Electrode in Nonaqueous Li-O2 Cells [J].
Thotiyl, Muhammed M. Ottakam ;
Freunberger, Stefan A. ;
Peng, Zhangquan ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (01) :494-500
[27]   Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction [J].
Whipple, Devin T. ;
Kenis, Paul J. A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3451-3458
[28]   Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source [J].
Xie, Zhaojun ;
Zhang, Xin ;
Zhang, Zhang ;
Zhou, Zhen .
ADVANCED MATERIALS, 2017, 29 (15)
[29]   The Li-CO2 battery: a novel method for CO2 capture and utilization [J].
Xu, Shaomao ;
Das, Shyamal K. ;
Archer, Lynden A. .
RSC ADVANCES, 2013, 3 (18) :6656-6660
[30]   In Situ Study of Oxygen Reduction in Dimethyl Sulfoxide (DMSO) Solution: A Fundamental Study for Development of the Lithium-Oxygen Battery [J].
Yu, Qiao ;
Ye, Shen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (22) :12236-12250