Drug Delivery From Polymer-Based Nanopharmaceuticals-An Experimental Study Complemented by Simulations of Selected Diffusion Processes

被引:57
作者
Macha, Innocent J. [1 ,2 ]
Ben-Nissan, Besim [3 ]
Vilchevskaya, Elena N. [4 ,5 ]
Morozova, Anna S. [4 ,5 ]
Abali, Bilen Emek [2 ]
Mueller, Wolfgang H. [2 ]
Rickert, W. [2 ]
机构
[1] Univ Dar Es Salaam, Dept Mech & Ind Engn, Dar Es Salaam, Tanzania
[2] Berlin Univ Technol, Inst Mech, Fac Mech Engn & Transport Syst 5, LKM, Berlin, Germany
[3] Univ Technol Sydney, Fac Sci, Sch Life Sci, Sydney, NSW, Australia
[4] Russian Acad Sci, Dept Theoret Mech, Appl Res Lab, Inst Problems Mech Engn, St Petersburg, Russia
[5] Peter Great St Petersburg Polytech Univ, St Petersburg, Russia
关键词
gentamicin; biphosphonate; polylacetic acid; diffusion coefficient; modeling; CONTROLLED-RELEASE; MATHEMATICAL-MODEL; CALCIUM-PHOSPHATE; GENTAMICIN; SYSTEMS; PREDICTION; MICROSPHERES; PLGA; MICROPARTICLES; BISPHOSPHONATE;
D O I
10.3389/fbioe.2019.00037
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The success of medical therapy depends on the correct amount and the appropriate delivery of the required drugs for treatment. By using biodegradable polymers a drug delivery over a time span of weeks or even months is made possible. This opens up a variety of strategies for better medication. The drug is embedded in a biodegradable polymer (the "carrier") and injected in a particular position of the human body. As a consequence of the interplay between the diffusion process and the degrading polymer the drug is released in a controlled manner. In this work we study the controlled release of medication experimentally by measuring the delivered amount of drug within a cylindrical shell over a long time interval into the body fluid. Moreover, a simple continuum model of the Fickean type is initially proposed and solved in closed-form. It is used for simulating some of the observed release processes for this type of carrier and takes the geometry of the drug container explicitly into account. By comparing the measurement data and the model predictions diffusion coefficients are obtained. It turns out that within this simple model the coefficients change over time. This contradicts the idea that diffusion coefficients are constants independent of the considered geometry. The model is therefore extended by taking an additional absorption term into account leading to a concentration dependent diffusion coefficient. This could now be used for further predictions of drug release in carriers of different shape. For a better understanding of the complex diffusion and degradation phenomena the underlying physics is discussed in detail and even more sophisticated models involving different degradation and mass transport phenomena are proposed for future work and study.
引用
收藏
页数:14
相关论文
共 58 条
[1]   Design and Biological Evaluation of Delivery Systems Containing Bisphosphonates [J].
Aderibigbe, Blessing ;
Aderibigbe, Isiaka ;
Popoola, Patricia .
PHARMACEUTICS, 2017, 9 (01)
[2]  
[Anonymous], 1979, MATH DIFFUSION
[3]   Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems [J].
Arifin, Davis Yohanes ;
Lee, Lai Yeng ;
Wang, Chi-Hwa .
ADVANCED DRUG DELIVERY REVIEWS, 2006, 58 (12-13) :1274-1325
[4]   Natural bioceramics: from coral to bone and beyond [J].
Ben-Nissan, B .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2003, 7 (4-5) :283-288
[5]   Development of bisphosphonates controlled delivery systems for bone implantation: influence of the formulation and process used on in vitro release [J].
Billon-Chabaud, A. ;
Gouyette, A. ;
Merle, C. ;
Bouler, J. M. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (05) :1599-1604
[6]   Modeling of drug release from swellable polymers [J].
Brazel, CS ;
Peppas, NA .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2000, 49 (01) :47-58
[7]  
Carslaw H. S, 1959, CONDUCTION HEAT SOLI
[8]  
Choi A. H., 2014, HDB BIOCERAMICS BIOC, P1
[9]  
Dash S, 2010, ACTA POL PHARM, V67, P217
[10]   An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery [J].
Dorati, Rossella ;
DeTrizio, Antonella ;
Genta, Ida ;
Grisoli, Pietro ;
Merelli, Alessia ;
Tomasi, Corrado ;
Conti, Bice .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 58 :909-917