The classification of normalizing groups

被引:10
作者
Araujo, Joao [1 ,2 ]
Cameron, Peter J. [3 ]
Mitchell, James D. [4 ]
Neunhoeffer, Max [4 ]
机构
[1] Univ Aberta, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[3] Univ London, Sch Math Sci, Dept Math, London WC1E 7HU, England
[4] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
Transformation semigroups; Permutation groups; Primitive groups; GAP; TRANSITIVE COLLINEATION GROUPS; PERMUTATION-GROUPS; SEMIGROUPS; MATRICES;
D O I
10.1016/j.jalgebra.2012.08.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a finite set such that vertical bar X vertical bar = n. Let T-n and S-n denote the transformation monoid and the symmetric group on n points, respectively. Given a is an element of T-n \ S-n, we say that a group G <= S-n is a-normalizing if < a, G > \ G = < g(-1)ag vertical bar g is an element of G >, where < a, G > and < g(-1)ag vertical bar g is an element of G > denote the subsemigroups of T-n generated by the sets {a} boolean OR G and {g(-1)ag vertical bar g is an element of G}, respectively. If G is a-normalizing for all a is an element of T-n \ S-n, then we say that G is normalizing. The goal of this paper is to classify the normalizing groups and hence answer a question of Levi, McAlister, and McFadden. The paper ends with a number of problems for experts in groups, semigroups and matrix theory. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 1996, GRAD TEXTS MATH
[2]   Semigroups of linear endomorphisms closed under conjugation [J].
Araújo, J ;
Silva, FC .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) :3679-3689
[3]   The origins of independence algebras [J].
Araújo, J ;
Fountain, J .
SEMIGROUPS AND LANGUAGES, 2004, :54-67
[4]   Groups that together with any transformation generate regular semigroups or idempotent generated semigroups [J].
Araujo, J. ;
Mitchell, J. D. ;
Schneider, Csaba .
JOURNAL OF ALGEBRA, 2011, 343 (01) :93-106
[5]  
Araujo J., 2 GEN HOMOGENEITY GR
[6]  
Araújo J, 2005, JP J ALGEBR NUMBER T, V5, P535
[7]   v*-ALGEBRAS, INDEPENDENCE ALGEBRAS AND LOGIC [J].
Araujo, Joao ;
Edmundo, Mario ;
Givant, Steven .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (07) :1237-1257
[8]  
Burns R.G., 1976, Bulletin of the Australian Mathematical Society, V14, P7
[9]  
Cameron Peter J., 1999, London Mathematical Society Student Texts, V45
[10]   Independence algebras [J].
Cameron, PJ ;
Szabó, C .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :321-334