The classification of normalizing groups

被引:10
作者
Araujo, Joao [1 ,2 ]
Cameron, Peter J. [3 ]
Mitchell, James D. [4 ]
Neunhoeffer, Max [4 ]
机构
[1] Univ Aberta, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
[3] Univ London, Sch Math Sci, Dept Math, London WC1E 7HU, England
[4] Univ St Andrews, Math Inst, St Andrews KY16 9SS, Fife, Scotland
关键词
Transformation semigroups; Permutation groups; Primitive groups; GAP; TRANSITIVE COLLINEATION GROUPS; PERMUTATION-GROUPS; SEMIGROUPS; MATRICES;
D O I
10.1016/j.jalgebra.2012.08.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a finite set such that vertical bar X vertical bar = n. Let T-n and S-n denote the transformation monoid and the symmetric group on n points, respectively. Given a is an element of T-n \ S-n, we say that a group G <= S-n is a-normalizing if < a, G > \ G = < g(-1)ag vertical bar g is an element of G >, where < a, G > and < g(-1)ag vertical bar g is an element of G > denote the subsemigroups of T-n generated by the sets {a} boolean OR G and {g(-1)ag vertical bar g is an element of G}, respectively. If G is a-normalizing for all a is an element of T-n \ S-n, then we say that G is normalizing. The goal of this paper is to classify the normalizing groups and hence answer a question of Levi, McAlister, and McFadden. The paper ends with a number of problems for experts in groups, semigroups and matrix theory. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:481 / 490
页数:10
相关论文
共 30 条
  • [1] [Anonymous], 1996, GRAD TEXTS MATH
  • [2] Semigroups of linear endomorphisms closed under conjugation
    Araújo, J
    Silva, FC
    [J]. COMMUNICATIONS IN ALGEBRA, 2000, 28 (08) : 3679 - 3689
  • [3] The origins of independence algebras
    Araújo, J
    Fountain, J
    [J]. SEMIGROUPS AND LANGUAGES, 2004, : 54 - 67
  • [4] Groups that together with any transformation generate regular semigroups or idempotent generated semigroups
    Araujo, J.
    Mitchell, J. D.
    Schneider, Csaba
    [J]. JOURNAL OF ALGEBRA, 2011, 343 (01) : 93 - 106
  • [5] Araujo J., 2 GEN HOMOGENEITY GR
  • [6] Araújo J, 2005, JP J ALGEBR NUMBER T, V5, P535
  • [7] v*-ALGEBRAS, INDEPENDENCE ALGEBRAS AND LOGIC
    Araujo, Joao
    Edmundo, Mario
    Givant, Steven
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (07) : 1237 - 1257
  • [8] Burns R.G., 1976, Bulletin of the Australian Mathematical Society, V14, P7
  • [9] Cameron Peter J., 1999, London Mathematical Society Student Texts, V45
  • [10] Independence algebras
    Cameron, PJ
    Szabó, C
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 321 - 334