A Parallelized Combined Direction Simultaneous Perturbation Stochastic Approximation Algorithm

被引:0
作者
Zhao, Hao [1 ]
Liu, Tiegang [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, Beijing, Peoples R China
来源
2017 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND APPLICATIONS (ICCIA) | 2017年
基金
中国国家自然科学基金;
关键词
stochastic optimization; simultaneous perturbation stochastic approximation; parallel computing; combined direction; OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The simultaneous perturbation stochastic approximation(SPSA) belongs to the class of iterative gradient-free algorithm. However, because of its slow convergence rate, the experimental effect is not ideal for large-scale problems. In order to accelerate the SPSA algorithm, this paper proposes a parallelized combined direction SPSA algorithm. Gradient directions among the master and slaves are combined to be a new iteration direction in every iteration to improve algorithm performance. Numerical experiments for typical nonlinear optimization problems demonstrate that the present algorithm outperforms the SPSA algorithm in the fewer step numbers.
引用
收藏
页码:141 / 144
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 2005, INTRO STOCHASTIC SEA
[2]  
Clark D., 1978, STOCHASTIC APPROXIMA
[3]   STOCHASTIC ESTIMATION OF THE MAXIMUM OF A REGRESSION FUNCTION [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (03) :462-466
[4]  
Maryak JL, 2001, P AMER CONTR CONF, P756, DOI 10.1109/ACC.2001.945806
[5]  
MORE JJ, 1981, ACM T MATH SOFTWARE, V7, P17, DOI 10.1145/355934.355936
[6]  
Schraudolph N. N., 2003, AISTATS
[7]   MULTIVARIATE STOCHASTIC-APPROXIMATION USING A SIMULTANEOUS PERTURBATION GRADIENT APPROXIMATION [J].
SPALL, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (03) :332-341
[8]   Implementation of the simultaneous perturbation algorithm for stochastic optimization [J].
Spall, JC .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1998, 34 (03) :817-823
[9]   A combined direction stochastic approximation algorithm [J].
Xu, Zi .
OPTIMIZATION LETTERS, 2010, 4 (01) :117-129
[10]  
Zhang H. J., 2009, J HUAZHONG U SCI TEC, V1