Propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion

被引:7
作者
Curtis, Christopher W. [1 ]
Bortz, David M. [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
TRAVELING-WAVES; DISPERSAL; ENVIRONMENT; INVASIONS; DYNAMICS; SPREAD; MODELS;
D O I
10.1103/PhysRevE.86.066108
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The propagation of fronts in the Fisher-Kolmogorov equation with spatially varying diffusion coefficients is studied. Using coordinate changes, WKB approximations, and multiple scales analysis, we provide an analytic framework that describes propagation of the front up to the minimum of the diffusion coefficient. We also present results showing the behavior of the front after it passes the minimum. In each case, we show that standard traveling coordinate frames do not properly describe front propagation. Last, we provide numerical simulations to support our analysis and to show, that around the minimum, the motion of the front is arrested on asymptotically significant time scales. DOI: 10.1103/PhysRevE.86.066108
引用
收藏
页数:8
相关论文
共 42 条
[31]   APPLICATION OF BROWNIAN-MOTION TO EQUATION OF KOLMOGOROV-PETROVSKII-PISKUNOV [J].
MCKEAN, HP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :323-331
[32]   Speed of reaction-diffusion fronts in spatially heterogeneous media -: art. no. 041105 [J].
Méndez, V ;
Fort, J ;
Rotstein, HG ;
Fedotov, S .
PHYSICAL REVIEW E, 2003, 68 (04)
[33]  
Murray J. D., 2001, INTERDISCIPLINARY AP, V17
[34]   SCALE-INVARIANCE IN REACTION-DIFFUSION MODELS OF SPATIAL PATTERN-FORMATION [J].
OTHMER, HG ;
PATE, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1980, 77 (07) :4180-4184
[35]  
Petrovskii S., 2005, CRC MATH COMPUTATION, V7
[36]   Wave propagation in heterogeneous excitable media [J].
Schebesch, I ;
Engel, H .
PHYSICAL REVIEW E, 1998, 57 (04) :3905-3910
[37]   TRAVELING PERIODIC-WAVES IN HETEROGENEOUS ENVIRONMENTS [J].
SHIGESADA, N ;
KAWASAKI, K ;
TERAMOTO, E .
THEORETICAL POPULATION BIOLOGY, 1986, 30 (01) :143-160
[38]  
Shigesada N., 1997, Biological invasions: theory and practice
[39]   GENE FLOW IN NATURAL-POPULATIONS [J].
SLATKIN, M .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1985, 16 :393-430
[40]   Invasion speed is affected by geographical variation in the strength of Allee effects [J].
Tobin, Patrick C. ;
Whitmire, Stefanie L. ;
Johnson, Derek M. ;
Bjornstad, Ottar N. ;
Liebhold, Andrew M. .
ECOLOGY LETTERS, 2007, 10 (01) :36-43