The Daugavet equation for operators on function spaces

被引:33
作者
Werner, D
机构
[1] I. Mathematisches Institut, Freie Universität Berlin, D-14 195 Berlin
关键词
D O I
10.1006/jfan.1996.2979
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the norm identity parallel to Id+T parallel to=1+parallel to T parallel to, which is known as the Daugavet equation, for weakly compact operators T on natural function spaces such as function algebras and L(1)-predual spaces, provided a non-discreteness assumption is met. We also consider c(0)-factorable operators and operators on C-Lambda-spaces. (C) 1997 Academic Press
引用
收藏
页码:117 / 128
页数:12
相关论文
共 17 条
[1]  
Abramovich Y., 1991, J. Oper. Theory, V25, P331
[2]   THE DAUGAVET EQUATION IN UNIFORMLY CONVEX BANACH-SPACES [J].
ABRAMOVICH, YA ;
ALIPRANTIS, CD ;
BURKINSHAW, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 97 (01) :215-230
[3]  
ANSARI SI, 1993, HOUSTON J MATH, V19, P587
[4]  
CHOQUET G, 1969, LECTURES ANAL, V2
[5]  
Daugavet I. K., 1963, USP MAT NAUK, V18, P157
[6]  
Diestel J., 1977, MATH SURVEYS, V15
[7]   APPLICATIONS OF CHOQUET SIMPLEXES TO ELLIPTIC AND PARABOLIC BOUNDARY VALUE PROBLEMS [J].
EFFROS, EG ;
KAZDAN, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 8 (01) :95-&
[8]   POINTS OF DIFFUSION OF LINEAR OPERATORS AND ALMOST DIFFUSE OPERATORS IN SPACES OF CONTINUOUS FUNCTIONS [J].
FOIAS, C ;
SINGER, I .
MATHEMATISCHE ZEITSCHRIFT, 1965, 87 (03) :434-&
[9]   ON RIESZ SUBSETS OF ABELIAN DISCRETE-GROUPS [J].
GODEFROY, G .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (03) :301-331
[10]  
GRAHAM CC, 1979, ESAYS COMMUTATIVE HA