Visual analytics of brain networks

被引:25
作者
Li, Kaiming [1 ,2 ,3 ]
Guo, Lei [3 ]
Faraco, Carlos [2 ,4 ]
Zhu, Dajiang [1 ,2 ]
Chen, Hanbo [1 ,2 ]
Yuan, Yixuan [3 ]
Lv, Jinglei [3 ]
Deng, Fan [1 ,2 ]
Jiang, Xi [1 ,2 ]
Zhang, Tuo [3 ]
Hu, Xintao [3 ]
Zhang, Degang [3 ]
Miller, L. Stephen [2 ,4 ,5 ]
Liu, Tianming [1 ,2 ]
机构
[1] Univ Georgia, Dept Comp Sci, Athens, GA 30602 USA
[2] Univ Georgia, Bioimaging Res Ctr, Athens, GA 30602 USA
[3] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[4] Univ Georgia, Dept Neurosci, Athens, GA 30602 USA
[5] Univ Georgia, Dept Psychol, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Multimodal neuroimaging; Joint modeling; Visual analytics; Visualization and interaction; Brain networks; FUNCTIONAL CONNECTIVITY; ALZHEIMERS-DISEASE; FMRI; SEGMENTATION; REGISTRATION; MRI; DTI; VISUALIZATION; DISORDER; SURFACE;
D O I
10.1016/j.neuroimage.2012.02.075
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Identification of regions of interest (ROIs) is a fundamental issue in brain network construction and analysis. Recent studies demonstrate that multimodal neuroimaging approaches and joint analysis strategies are crucial for accurate, reliable and individualized identification of brain ROIs. In this paper, we present a novel approach of visual analytics and its open-source software for ROI definition and brain network construction. By combining neuroscience knowledge and computational intelligence capabilities, visual analytics can generate accurate, reliable and individualized ROIs for brain networks via joint modeling of multimodal neuroimaging data and an intuitive and real-time visual analytics interface. Furthermore, it can be used as a functional ROI optimization and prediction solution when fMRI data is unavailable or inadequate. We have applied this approach to an operation span working memory fMRI/DTI dataset, a schizophrenia DTI/resting state fMRI (R-fMRI) dataset, and a mild cognitive impairment DTI/R-fMRI dataset, in order to demonstrate the effectiveness of visual analytics. Our experimental results are encouraging. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 97
页数:16
相关论文
共 70 条
[1]   Brodmann's areas 17 and 18 brought into stereotaxic space - Where and how variable? [J].
Amunts, K ;
Malikovic, A ;
Mohlberg, H ;
Schormann, T ;
Zilles, K .
NEUROIMAGE, 2000, 11 (01) :66-84
[2]  
Anderson E.J., 2011, CEREB CORTEX 0621
[3]  
Andersson J., 2008, FNIRT FMRIBS NONLINE
[4]  
[Anonymous], PREDICTING FUNCTIONA
[5]  
[Anonymous], 16 ANN M ORG HUM BRA
[6]  
Atri A, 2011, ARCH NEUROL-CHICAGO, V68, P599, DOI 10.1001/archneurol.2011.94
[7]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[8]  
Azar Fred S., 2005, Proceedings of the SPIE - The International Society for Optical Engineering, V6009, p60090E, DOI 10.1117/12.638976
[9]   Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study [J].
Bai, Feng ;
Zhang, Zhijun ;
Yu, Hui ;
Shi, Yongmei ;
Yuan, Yonggui ;
Zhu, Wanlin ;
Zhang, Xiangrong ;
Qian, Yun .
NEUROSCIENCE LETTERS, 2008, 438 (01) :111-115
[10]   Fusion Viewer: A New Tool for Fusion and Visualization of Multimodal Medical Data Sets [J].
Baum, Karl G. ;
Helguera, Maria ;
Krol, Andrzej .
JOURNAL OF DIGITAL IMAGING, 2008, 21 (Suppl 1) :S59-S68