Lossless convexification of control constraints for a class of nonlinear optimal control problems

被引:71
作者
Blackmore, Lars [1 ]
Acikmese, Behcet [2 ]
Carson, John M., III [2 ]
机构
[1] Space Explorat Technol, Hawthorne, CA 90250 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家航空航天局;
关键词
Optimal control theory; Control of constrained systems; Guidance; navigation and control of vehicles; POWERED-DESCENT GUIDANCE; IMAGE SEGMENTATION; OPTIMIZATION;
D O I
10.1016/j.sysconle.2012.04.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:863 / 870
页数:8
相关论文
共 38 条
[1]   Convex programming approach to powered descent guidance for Mars landing [J].
Acikmese, Behcet ;
Ploen, Scott R. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (05) :1353-1366
[2]  
[Anonymous], 2010, ROCKET PROPULSION EL
[3]  
[Anonymous], 1975, OPTIMAL CONTROL THEO
[4]  
Augustine N.R., 2009, REV HUMAN SPACEFLIGH
[5]  
Bertsekas D.P., 2000, Nonlinear Programming, VSecond
[6]   Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization [J].
Blackmore, Lars ;
Acikmese, Behcet ;
Scharf, Daniel P. .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2010, 33 (04) :1161-1171
[7]   Completely Convex Formulation of the Chan-Vese Image Segmentation Model [J].
Brown, Ethan S. ;
Chan, Tony F. ;
Bresson, Xavier .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 98 (01) :103-121
[8]   Algorithms for finding global minimizers of image segmentation and denoising models [J].
Chan, Tony F. ;
Esedoglu, Selim ;
Nikolova, Mila .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (05) :1632-1648
[9]  
DAngelo H., 1970, Linear Time Varying Systems: Analysis and Synthesis, Vfirst
[10]  
David L., 2010, MSNBC NEWS FEB