ON THE CATEGORY OF COFINITE MODULES WHICH IS ABELIAN

被引:42
作者
Bahmanpour, Kamal [1 ]
Naghipour, Reza [2 ,3 ]
Sedghi, Monireh [4 ]
机构
[1] Univ Mohaghegh Ardabili, Fac Math Sci, Dept Math, Ardebil 5619911367, Iran
[2] Univ Tabriz, Dept Math, Tabriz, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[4] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
关键词
Abelian category; arithmetic rank; cofinite module; Noetherian rings; LOCAL COHOMOLOGY MODULES; IDEALS;
D O I
10.1090/S0002-9939-2014-11836-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R denote a commutative Noetherian (not necessarily local) ring and I an ideal of R of dimension one. The main purpose of this paper is to generalize, and to provide a short proof of, K. I. Kawasaki's theorem that the category M(R, I)(cof) of I-cofinite modules over a commutative Noetherian local ring R forms an Abelian subcategory of the category of all R-modules. Consequently, this assertion answers affirmatively the question raised by R. Hartshorne in his article Affine duality and cofiniteness [Invent. Math. 9 (1970), 145-164] for an ideal of dimension one in a commutative Noetherian ring R.
引用
收藏
页码:1101 / 1107
页数:7
相关论文
共 12 条
[1]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[2]  
Bruns W., 1993, COHEN MACAULAY RINGS, V39
[3]   Cofinite modules and local cohomology [J].
Delfino, D ;
Marley, T .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1997, 121 (01) :45-52
[4]   AFFINE DUALITY AND COFINITENESS [J].
HARTSHORNE, R .
INVENTIONES MATHEMATICAE, 1970, 9 (02) :145-+
[6]  
Kawasaki K.-I., 2011, NIHONKAI MATH J, V22, P67
[7]  
Kawasaki K.-I., 2010, ACTES RENCONTRES CTR, V2, P123
[8]   On a category of cofinite modules which is Abelian [J].
Kawasaki, Ken-ichiroh .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (1-2) :587-608
[9]  
Matsumura H., 1986, CAMBRIDGE STUDIES AD, V8
[10]   Modules cofinite with respect to an ideal [J].
Melkersson, L .
JOURNAL OF ALGEBRA, 2005, 285 (02) :649-668