Fabrication of Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

被引:2
作者
Denis, Kevin L. [1 ]
Brown, Ari David [1 ]
Chang, Meng-Ping [2 ]
Hu, Ron [2 ]
Rostem, Karwan [3 ]
U-Yen, Kongpop [1 ]
Wollack, Edward J. [1 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Stinger Ghaffarian Technol Inc, Greenbelt, MD 20771 USA
[3] Johns Hopkins Univ, Baltimore, MD 21218 USA
关键词
Crossover; air-bridge; microstrip and co-planar waveguide transmission lines; MEMS; superconducting circuit design and fabrication;
D O I
10.1109/TASC.2016.2646917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications is described. In order to reduce ohmic and parasitic losses atmillimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micromachining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum-gap structures along with the wax bonded wafer after deep reactive ion etching is implemented in the same process step used to complete the detector fabrication.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Ultra-Wideband Crossover Using Microstrip-to-Coplanar Waveguide Transitions [J].
Abbosh, A. ;
Ibrahim, S. ;
Karim, M. .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2012, 22 (10) :500-502
[2]  
Appel J. W., 2014, P SOC PHOTO-OPT INS, V9153
[3]   Fabrication of a Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors [J].
Crowe, Erik J. ;
Bennett, Charles L. ;
Chuss, David T. ;
Denis, Kevin L. ;
Eimer, Joseph ;
Lourie, Nathan ;
Marriage, Tobias ;
Moseley, Samuel H. ;
Rostem, Karwan ;
Stevenson, Thomas R. ;
Towner, Deborah ;
U-yen, Kongpop ;
Wollack, Edward J. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2013, 23 (03)
[4]   Fabrication of an Antenna-Coupled Bolometer for Cosmic Microwave Background Polarimetry [J].
Denis, K. L. ;
Cao, N. T. ;
Chuss, D. T. ;
Eimer, J. ;
Hinderks, J. R. ;
Hsieh, W-T. ;
Moseley, S. H. ;
Stevenson, T. R. ;
Talley, D. J. ;
U-Yen, K. ;
Wollack, E. J. .
LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 :371-+
[5]  
Denis K. L., 2015, J LOW TEMP PHYS, P1
[6]   COUPLING MODEL FOR A PAIR OF SKEWED TRANSMISSION-LINES [J].
GIRI, DV ;
CHANG, SK ;
TESCHE, FM .
IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1980, 22 (01) :20-28
[7]   The Cosmology Large Angular Scale Surveyor [J].
Harrington, Kathleen ;
Marriage, Tobias ;
Ali, Aamir ;
Appel, John W. ;
Bennett, Charles L. ;
Boone, Fletcher ;
Brewer, Michael ;
Chan, Manwei ;
Chuss, David T. ;
Colazo, Felipe ;
Dahal, Sumit ;
Denis, Kevin ;
Dunner, Rolando ;
Eimer, Joseph ;
Essinger-Hileman, Thomas ;
Fluxa, Pedro ;
Halpern, Mark ;
Hilton, Gene ;
Hinshaw, Gary F. ;
Hubmayr, Johannes ;
Iuliano, Jeffery ;
Karakla, John ;
McMahon, Jeff ;
Miller, Nathan T. ;
Moseley, Samuel H. ;
Palma, Gonzalo ;
Parker, Lucas ;
Petroff, Matthew ;
Pradenas, Bastian ;
Rostem, Karwan ;
Sagliocca, Marco ;
Valle, Deniz ;
Watts, Duncan ;
Wollack, Edward ;
Xu, Zhilei ;
Zeng, Lingzhen .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VIII, 2016, 9914
[8]  
Hoffmann R. K., 1987, HDB MICROWAVE INTEGR, P70
[9]   Critical point drying and cleaning for MEMS technology [J].
Jafri, I ;
Busta, H ;
Walsh, S .
MEMS RELIABILITY FOR CRITICAL AND SPACE APPLICATIONS, 1999, 3880 :51-58
[10]   DESIGN OF A BROADBAND MICROSTRIP CROSSOVER FOR ULTRA-WIDEBAND APPLICATIONS [J].
Kusiek, A. ;
Marynowski, W. ;
Mazur, J. .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2010, 52 (05) :1100-1104