Fault slip rates and interseismic deformation in the western Transverse Ranges, California

被引:40
作者
Marshall, Scott T. [1 ]
Funning, Gareth J. [2 ]
Owen, Susan E. [3 ]
机构
[1] Appalachian State Univ, Dept Geol, Boone, NC 28608 USA
[2] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
interseismic deformation; Transverse Ranges; strain inversion; mechanical model; dislocation model; fault slip rate; SAN-ANDREAS-FAULT; LOS-ANGELES BASIN; TECTONIC BOUNDARY-CONDITIONS; 1994 NORTHRIDGE EARTHQUAKES; NEOGENE CRUSTAL ROTATIONS; RECENT SURFACE RUPTURE; BLIND-THRUST SYSTEM; OAK-RIDGE FAULT; SOUTHERN-CALIFORNIA; VENTURA BASIN;
D O I
10.1002/jgrb.50312
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To better constrain fault slip rates and patterns of interseismic deformation in the western Transverse Ranges of southern California, we present results from analysis of GPS and interferometric synthetic aperture radar (InSAR) data and three-dimensional mechanical and kinematic models of active faulting. Anthropogenic motions are detected in several localized zones but do not significantly affect the vast majority of continuous GPS site locations. GPS measures contraction rates across the Ventura Basin of similar to 7 mm/yr oriented west-northwest with rates decreasing to the west and east. The Santa Barbara channel is accommodating similar to 6.5 mm/yr in the east and similar to 2.5 mm/yr in the western portions of N/S contraction. Inversion of horizontal GPS velocities highlights a zone of localized fast contraction rates following the Ventura Basin. Using a mechanical model driven by geodetically calculated strain rates, we show that there are no significant discrepancies between short-term slip rates captured by geodesy and longer-term slip rates measured by geology. Mechanical models reproduce the first-order interseismic velocity and strain rate patterns but fail to reproduce strongly localized contraction in the Ventura Basin due to the inadequate homogeneous elastic properties of the model. Existing two-dimensional models match horizontal rates but predict significant uplift gradients that are not observed in the GPS data. Mechanical models predict zones of fast contraction in the Santa Barbara channel and offshore near Malibu, suggesting that offshore faults represent a significant seismic hazard to the region. Furthermore, many active faults throughout the region may produce little to no interseismic deformation, making accurate seismic hazard assessment challenging.
引用
收藏
页码:4511 / 4534
页数:24
相关论文
共 50 条
  • [31] Stable, rapid rate of slip since inception of the San Jacinto fault, California
    Blisniuk, Kimberly
    Oskin, Michael
    Meriaux, Anne-Sophie
    Rockwell, Thomas
    Finkel, Robert C.
    Ryerson, Frederick J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (16) : 4209 - 4213
  • [32] Spatiotemporal Rates of Tectonic Deformation and Landscape Evolution above a Laterally Propagating Thrust Fault: Wheeler Ridge Anticline, California, USA
    Kleber, Emily J.
    DeVecchio, Duane E.
    Arrowsmith, J. Ramon
    Rittenour, Tammy M.
    [J]. LITHOSPHERE, 2021, 2021 (01) : 1 - 15
  • [33] Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California
    McGill, Sally F.
    Wells, Stephen G.
    Fortner, Sarah K.
    Kuzma, Heidi Anderson
    Mcgij, John D.
    [J]. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2009, 121 (3-4) : 536 - 554
  • [34] Can Lateral Viscosity Contrasts Explain Asymmetric Interseismic Deformation around Strike-Slip Faults?
    Vaghri, Ali
    Hearn, Elizabeth H.
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2012, 102 (02) : 490 - 503
  • [35] Slip Rates Along the Laohushan Fault and Spatial Variation in Slip Rate Along the Haiyuan Fault Zone
    Liu, Jinrui
    Ren, Zhikun
    Zhang, Huiping
    Li, Chuanyou
    Zhang, Zhuqi
    Zheng, Wenjun
    Li, Xuemei
    Liu, Caicai
    [J]. TECTONICS, 2022, 41 (02)
  • [36] Interseismic crustal deformation of frontal thrust fault system in the Chiayi-Tainan area, Taiwan
    Tsai, Min-Chien
    Yu, Shui-Beih
    Hsu, Ya-Ju
    Chen, Horng-Yue
    Chen, How-Wei
    [J]. TECTONOPHYSICS, 2012, 554 : 169 - 184
  • [37] The unusual temporal and spatial slip history of the Wassuk Range normal fault, western Nevada (USA): Implications for seismic hazard and Walker Lane deformation
    Surpless, B.
    Kroeger, G.
    [J]. GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2015, 127 (5-6) : 737 - 758
  • [38] Structural modeling of the Western Transverse Ranges: An imbricated thrust ramp architecture
    Levy, Y.
    Rockwell, T. K.
    Shaw, J. H.
    Plesch, A.
    Driscoll, N. W.
    Perea, H.
    [J]. LITHOSPHERE, 2019, 11 (06) : 868 - 883
  • [39] Interseismic Deformation of the Altyn Tagh Fault Determined by Interferometric Synthetic Aperture Radar (InSAR) Measurements
    Zhu, Sen
    Xu, Caijun
    Wen, Yangmao
    Liu, Yang
    [J]. REMOTE SENSING, 2016, 8 (03)
  • [40] Interpreting the interseismic deformation of the Altotiberina Fault (central Italy) through 2D modelling
    Finocchio, Debora
    Barba, Salvatore
    Santini, Stefano
    Megna, Antonella
    [J]. ANNALS OF GEOPHYSICS, 2013, 56 (06)