3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices

被引:339
作者
Zhao, Yu [1 ,2 ]
Liu, Borui [1 ,2 ]
Pan, Lijia [3 ]
Yu, Guihua [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[3] Nanjing Univ, Natl Lab Microstruct Nanjing, Sch Elect Sci & Engn, Nanjing 210008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
LI-ION; BULK SYNTHESIS; HIGH-CAPACITY; POLYANILINE; LITHIUM; POLYPYRROLE; ELECTRODE; ANODES; CARBON; NANOFIBERS;
D O I
10.1039/c3ee40997j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Conducting polymer hydrogels (CPHs) represent a unique class of materials that synergize the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. This perspective provides a brief overview of current research activities in the field of three-dimensional (3D) nanostructured CPHs for high-performance electrochemical devices. The synthesis methods of conventional conductive polymers (CPs) and hydrogels are outlined with emphasis on newly developed methods for the preparation of 3D nanostructured CPs and CPHs. Following this discussion is an outline of the applications of 3D CPH nanostructures with particular focus on those applications in which nanostructured CPHs are clearly advantageous over their conventional counterparts. Other potential applications of nanostructured CPHs are also discussed in this perspective along with the main challenges and future research directions for this new class of conductive hydrogels.
引用
收藏
页码:2856 / 2870
页数:15
相关论文
共 135 条
[1]   Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes [J].
Abidian, Mohammad Reza ;
Martin, David C. .
BIOMATERIALS, 2008, 29 (09) :1273-1283
[2]   Multifunctional Nanobiomaterials for Neural Interfaces [J].
Abidian, Mohammad Reza ;
Martin, David C. .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (04) :573-585
[3]   Conducting-polymer nanotubes for controlled drug release [J].
Abidian, MR ;
Kim, DH ;
Martin, DC .
ADVANCED MATERIALS, 2006, 18 (04) :405-+
[4]   Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode [J].
Åsberg, P ;
Inganäs, O .
BIOSENSORS & BIOELECTRONICS, 2003, 19 (03) :199-207
[5]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[6]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[7]   Polypyrrole nanowire actuators [J].
Berdichevsky, Y ;
Lo, YH .
ADVANCED MATERIALS, 2006, 18 (01) :122-125
[8]  
Bognitzki M, 2000, ADV MATER, V12, P637, DOI 10.1002/(SICI)1521-4095(200005)12:9<637::AID-ADMA637>3.0.CO
[9]  
2-W
[10]  
Bognitzki M, 2001, ADV MATER, V13, P70, DOI 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.3.CO