A Wireless Transient Attenuated-Exponential Overpressure Beamforming With for Far-Field Blast Source Localization

被引:1
作者
Gao, Shang [1 ]
Zhang, Zirui [1 ]
Zong, Yan [2 ]
Tian, Guiyun [3 ]
Dai, Xuewu [4 ]
Zhong, Yongteng [5 ]
Jin, Xin [6 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Nanjing 210016, Peoples R China
[3] Newcastle Univ, Newcastle Upon Tyne NE1 7RU, England
[4] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne NE7 7YT, England
[5] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China
[6] Shenyang Aircraft Design & Res Inst Co Ltd, Yangzhou Collaborat Innovat Res Inst, Shenyang 225002, Peoples R China
关键词
Blast wave; delay-and-sum (DAS); overpressure; source localization; time beamforming; wireless sensor node (WSN); SHOOTER LOCALIZATION; OPTIMIZATION; MODEL;
D O I
10.1109/JSEN.2022.3187762
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Time-domain beamforming is more suitable for blast wave transient signal than frequency-domain beamformer because wideband spectrum of noise makes the beamforming image less clear. To avoid the gust effects and enable the location of blast source accurately, this article proposes a new 1-D far-field delay-and-sum (DAS) beamforming method with an attenuate exponential function model for wireless overpressure transient signal. In addition, we design wireless overpressure peak and root-mean-square (rms) directional estimators to assess the performance of the proposed new DAS beamforming method. Furthermore, the effects of the wireless pressure sensor node (WPSN) spacing, the number of WPSNs, and sidelobe level brought from noise on the beamwidth are investigated in the two estimators. The proposed formula is verified by a uniformly spaced linear sensing array, and the results verify the feasibility of the proposed method in blast source localization. This article is conducted to provide new insight into blast source localization algorithm and further open a door for transient blast overpressure source localization scenarios in future.
引用
收藏
页码:23521 / 23528
页数:8
相关论文
共 30 条
[1]   Sensor fusion, sensitivity analysis and calibration in shooter localization systems [J].
Akman, Caglar ;
Sonmez, Tolga ;
Ozugur, Ozgur ;
Basil, Abdil Burak ;
Leblebicioglu, M. Kemal .
SENSORS AND ACTUATORS A-PHYSICAL, 2018, 271 :66-75
[2]  
Alphonse Vanessa D, 2015, Biomed Sci Instrum, V51, P143
[3]   An Optical Fiber Transducer for Measuring Kinetics of Skull-Brain Interaction in a Surrogate Model of the Human Head Subjected to Blast Overpressure [J].
Azar, Austin ;
Bhagavathula, Kapil Bharadwaj ;
Hogan, James ;
Josey, Tyson ;
Ouellet, Simon ;
Satapathy, Sikhanda ;
Dennison, Christopher R. .
IEEE SENSORS JOURNAL, 2019, 19 (02) :548-559
[4]   Wireless Transmission of Friedlander-Type Signals for the Dynamic Measurement of Blast Pressure [J].
Chalnot, Mathieu ;
Coustou, Anthony ;
Aubert, Herve ;
Pons, Patrick ;
Lavayssiere, Maylis ;
Lefrancois, Alexandre ;
Luc, Jerome .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2021, 46 (04) :563-571
[5]   Robust Covariance Matrix Reconstruction Algorithm for Time-Domain Wideband Adaptive Beamforming [J].
Chen, Peng ;
Yang, Yixin ;
Wang, Yong ;
Ma, Yuanliang ;
Yang, Long .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (02) :1405-1416
[6]  
Fickett W., 2011, Detonation: theory and experiment
[7]   Experimental investigation of blast wave propagation in an urban environment [J].
Fouchier, C. ;
Laboureur, D. ;
Youinou, L. ;
Lapebie, E. ;
Buchlin, J. M. .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2017, 49 :248-265
[8]  
Fourmann J, 2016, EUR MICROW CONF, P1339, DOI 10.1109/EuMC.2016.7824599
[9]  
Fourmann J, 2016, IEEE ANTENNAS PROP, P1999, DOI 10.1109/APS.2016.7696706
[10]  
Fourmann J., 2016, P IEEE SENSORS, P1