Near-Infrared Photoluminescence in the Femtosecond Time Region in Mono layer Graphene on SiO2

被引:23
作者
Koyama, Takeshi [1 ]
Ito, Yoshito [2 ]
Yoshida, Kazuma [2 ]
Tsuji, Masaharu [2 ,3 ]
Ago, Hiroki [2 ,3 ]
Kishida, Hideo [1 ]
Nakamura, Arao [1 ]
机构
[1] Nagoya Univ, Dept Appl Phys, Grad Sch Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Kyushu Univ, Grad Sch Engn Sci, Kasuga, Fukuoka 8168580, Japan
[3] Kyushu Univ, Inst Mat Chem & Engn, Kasuga, Fukuoka 8168580, Japan
关键词
monolayer graphene; photocarrier relaxation; carrier cooling dynamics; carrier-phonon interaction; photoluminescence; femtosecond time-resolved luminescence spectroscopy; LARGE-AREA; EXFOLIATED GRAPHENE; ULTRAFAST; ABSORPTION; DYNAMICS; RAMAN; SPECTROSCOPY; RELAXATION; SEPARATION; GRAPHITE;
D O I
10.1021/nn305558r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We Investigate the dynamical properties of photoexcited carders In a single monolayer of graphene at room temperature in air using femtosecond time-resolved luminescence spectroscopy. The luminescence kinetics are observed in the near-Infrared region of 0.7-1.4 eV and analyzed based on the two-temperature model describing the cooling of thermalized carriers via the carrier-optical phonon Interaction. The observed luminescence In the range 0.7-0.9 eV is well reproduced by the model. In the range 1.0-1.4 eV, however, the luminescence, which decays in similar to 300 fs, cannot be reproduced by this model. These results indicate that the carrier system is not completely thermalized in similar to 300 fs. We also show the importance of the carrier-doping effect Induced by the substrate and surrounding environment in the carrier cooling dynamics and the predominance of optical phonons over acoustic phonons In the carrier-phonon interactions even at a temperature of similar to 400 K.
引用
收藏
页码:2335 / 2343
页数:9
相关论文
共 73 条
[1]   Properties of graphene: a theoretical perspective [J].
Abergel, D. S. L. ;
Apalkov, V. ;
Berashevich, J. ;
Ziegler, K. ;
Chakraborty, Tapash .
ADVANCES IN PHYSICS, 2010, 59 (04) :261-482
[2]   Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene [J].
Ago, Hiroki ;
Ogawa, Yui ;
Tsuji, Masaharu ;
Mizuno, Seigi ;
Hibino, Hiroki .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (16) :2228-2236
[3]   THEORY OF THERMAL RELAXATION OF ELECTRONS IN METALS [J].
ALLEN, PB .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1460-1463
[4]   Dynamical conductivity and zero-mode anomaly in honeycomb lattices [J].
Ando, T ;
Zheng, YS ;
Suzuura, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (05) :1318-1324
[5]  
Anisimov S. I., 1974, SOV PHYS JETP, V39, P375, DOI DOI 10.1016/J.JMATPROTEC.2009.05.031
[6]   Graphene: Electronic and Photonic Properties and Devices [J].
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4285-4294
[7]   Probing the Intrinsic Properties of Exfoliated Graphene: Raman Spectroscopy of Free-Standing Monolayers [J].
Berciaud, Stephane ;
Ryu, Sunmin ;
Brus, Louis E. ;
Heinz, Tony F. .
NANO LETTERS, 2009, 9 (01) :346-352
[8]   Effect of Domain Boundaries on the Raman Spectra of Mechanically Strained Graphene [J].
Bissett, Mark A. ;
Izumida, Wataru ;
Saito, Riichiro ;
Ago, Hiroki .
ACS NANO, 2012, 6 (11) :10229-10238
[9]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[10]   Ultrafast nonequilibrium carrier dynamics in a single graphene layer [J].
Breusing, M. ;
Kuehn, S. ;
Winzer, T. ;
Malic, E. ;
Milde, F. ;
Severin, N. ;
Rabe, J. P. ;
Ropers, C. ;
Knorr, A. ;
Elsaesser, T. .
PHYSICAL REVIEW B, 2011, 83 (15)