Dual matter-wave inertial sensors in weightlessness

被引:160
作者
Barrett, Brynle [1 ,2 ]
Antoni-Micollier, Laura [1 ,2 ]
Chichet, Laure [1 ,2 ]
Battelier, Baptiste [1 ,2 ]
Leveque, Thomas [3 ]
Landragin, Arnaud [4 ]
Bouyer, Philippe [1 ,2 ]
机构
[1] CNRS, LP2N, IOGS, Rue Francois Mitterrand, F-33400 Talence, France
[2] Univ Bordeaux, Rue Francois Mitterrand, F-33400 Talence, France
[3] CNES, 18 Ave Edouard Belin, F-31400 Toulouse, France
[4] UPMC Univ Paris 06, LNE SYRTE, Observ Paris, PSL Res Univ,CNRS,Sorbonne Univ, 61 Ave Observ, F-75014 Paris, France
关键词
ATOM INTERFEROMETERS; SENSITIVITY;
D O I
10.1038/ncomms13786
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous Rb-87-K-39 interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10(-2) g Hz(-1/2)), variations in acceleration (0-1.8 g) and rotation rates (5 degrees s(-1)) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eotvos parameter with systematic-limited uncertainties of 1.1-10(-3) and 3.0-10(-4) during standard-and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions.
引用
收藏
页数:9
相关论文
共 43 条
[1]   STE-QUEST-test of the universality of free fall using cold atom interferometry [J].
Aguilera, D. N. ;
Ahlers, H. ;
Battelier, B. ;
Bawamia, A. ;
Bertoldi, A. ;
Bondarescu, R. ;
Bongs, K. ;
Bouyer, P. ;
Braxmaier, C. ;
Cacciapuoti, L. ;
Chaloner, C. ;
Chwalla, M. ;
Braxmaier, C. ;
Cacciapuoti, L. ;
Chaloner, C. ;
Chwalla, M. ;
Ertmer, W. ;
Franz, M. ;
Gaaloul, N. ;
Gehler, M. ;
Gerardi, D. ;
Gesa, L. ;
Guerlebeck, N. ;
Hartwig, J. ;
Hauth, M. ;
Hellmig, O. ;
Herr, W. ;
Herrmann, S. ;
Heske, A. ;
Hinton, A. ;
Ireland, P. ;
Jetzer, P. ;
Johann, U. ;
Krutzik, M. ;
Kubelka, A. ;
Laemmerzahl, C. ;
Landragin, A. ;
Lloro, I. ;
Massonnet, D. ;
Mateos, I. ;
Milke, A. ;
Nofrarias, M. ;
Oswald, M. ;
Peters, A. ;
Posso-Trujillo, K. ;
Rasel, E. ;
Rocco, E. ;
Roura, A. ;
Rudolph, J. ;
Schleich, W. .
CLASSICAL AND QUANTUM GRAVITY, 2014, 31 (11)
[2]   Correlative methods for dual-species quantum tests of the weak equivalence principle [J].
Barrett, B. ;
Antoni-Micollier, L. ;
Chichet, L. ;
Battelier, B. ;
Gominet, P-A ;
Bertoldi, A. ;
Bouyer, P. ;
Landragin, A. .
NEW JOURNAL OF PHYSICS, 2015, 17
[3]   The Sagnac effect: 20 years of development in matter-wave interferometry [J].
Barrett, Brynle ;
Geiger, Remy ;
Dutta, Indranil ;
Meunier, Matthieu ;
Canuel, Benjamin ;
Gauguet, Alexandre ;
Bouyer, Philippe ;
Landragin, Arnaud .
COMPTES RENDUS PHYSIQUE, 2014, 15 (10) :875-883
[4]   High-order inertial phase shifts for time-domain atom interferometers [J].
Bongs, K. ;
Launay, R. ;
Kasevich, M. A. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 84 (04) :599-602
[5]  
Canuel B, 2007, THESIS
[6]   A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth's Gravity Field [J].
Carraz, Olivier ;
Siemes, Christian ;
Massotti, Luca ;
Haagmans, Roger ;
Silvestrin, Pierluigi .
MICROGRAVITY SCIENCE AND TECHNOLOGY, 2014, 26 (03) :139-145
[7]   Measurement of the sensitivity function in a time-domain atomic interferometer [J].
Cheinet, Patrick ;
Canuel, Benjamin ;
Dos Santos, Franck Pereira ;
Gauguet, Alexandre ;
Yver-Leduc, Florence ;
Landragin, Arnaud .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (06) :1141-1148
[8]   Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry [J].
Dickerson, Susannah M. ;
Hogan, Jason M. ;
Sugarbaker, Alex ;
Johnson, David M. S. ;
Kasevich, Mark A. .
PHYSICAL REVIEW LETTERS, 2013, 111 (08)
[9]   Continuous Cold-Atom Inertial Sensor with 1 nrad/ sec Rotation Stability [J].
Dutta, I. ;
Savoie, D. ;
Fang, B. ;
Venon, B. ;
Alzar, C. L. Garrido ;
Geiger, R. ;
Landragin, A. .
PHYSICAL REVIEW LETTERS, 2016, 116 (18)
[10]   Mobile quantum gravity sensor with unprecedented stability [J].
Freier, C. ;
Hauth, M. ;
Schkolnik, V. ;
Leykauf, B. ;
Schilling, M. ;
Wziontek, H. ;
Scherneck, H-G ;
Mueller, J. ;
Peters, A. .
8TH SYMPOSIUM ON FREQUENCY STANDARDS AND METROLOGY 2015, 2016, 723